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Abstract

The objective of this work was to present two different methodologies in order to obtain
a better comprehension of rainfall phenomena and its consequences over a particular
region which suffers from water scarcity. Firstly, semivariogram models were selected to
estimate trends in monthly precipitation in Paraíba State-Brazil using ordinary kriging.
The methodology involves the application of geostatistical interpolation of precipitation
records of 51 years from 69 rainfall stations across the state. Analysis of semivariograms
showed that anisotropy for specific months had a strong spatial dependence (Index of
Spatial Dependence - IDE <25%). The trends were subjected to the following models:
circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, K-Bessel
and tetraspherical. The models with the best fit were selected by cross-validation and
Error Comparison Index (ECI). Each data set month had a particular spatial dependence
structure, which made it necessary to define specific models of semivariograms in order
to enhance the adjustment of the experimental semivariogram. Besides, the standardized
error prediction map and hot spot analysis were obtained with the aim of justifying the
chosen models. Furthermore, one can see that a climate system is a complex nonlinear
system. To describe the complexity characteristics of precipitation series in Paraíba, we
propose the use of sample entropy, a kind of entropy-based algorithm, to measure the
complexity of precipitation series. The Paraíba’s four macro-regions: Mata, Agreste,
Borborema, and Sertão were analyzed. Results of analysis show that complexities of
monthly average precipitation have differences in the macro-regions. Sample entropy can
reflect the dynamic change of precipitation series providing a new way to investigate the
complexity of hydrological series. The complexity exhibits an areal variation of local water
resources system which can influence the basis for utilizing and developing resources in
dry areas.

Keywords: Rainfall, Trends, Paraíba, Sample Entropy.



Resumo

No presente trabalho duas metodologias diferentes foram investigadas a fim de obter uma
melhor compreensão dos fenômenos de chuva e suas consequências sobre uma região par-
ticular que sofre escassez de recursos hídricos. Em primeiro lugar, foram selecionados
modelos de semivariogramas para determinar as tendências de precipitação mensal no
Estado da Paraíba usando krigagem ordinária. A metodologia envolve a aplicação de
interpolação geoestatística de registros de precipitação de 51 anos de 69 estações plu-
viométricas em todo o Estado. As análises de semivariogramas mostraram que a ocorrên-
cia da anisotropia durante meses específicos teve uma forte dependência espacial (Índice
de Dependência Espacial - IDE < 25 %). As tendências foram submetidas aos seguintes
modelos: Gaussian, rational quadratic, circular, esférico, pentaspherical, exponencial, K-
Bessel e tetraspherical. Os modelos com o melhor ajuste foram selecionados pela validação
cruzada e Índice de Comparação de Erros (ICE). Cada conjunto de dados apresentou uma
estrutura de dependência espacial particular, o que tornou necessário definir modelos es-
pecíficos de semivariogramas, a fim de melhorar o ajuste do semivariograma experimental.
Além disso, o mapa de previsão de erro padronizado e Hot Spots foram obtidos com o
objetivo de justificar os modelos escolhidos. Um sistema climático é um sistema não-
linear bastante complexo. Para descrever as características de complexidade das séries
de precipitação na Paraíba, propomos o uso do Sample Entropy, um algoritmo baseado
na entropia de Shannon, para medir a complexidade da série de precipitação. Quatro
macro-regiões da Paraíba foram analisadas: Mata, Agreste, Borborema e Sertão. Os re-
sultados das análises mostraram que as complexidades de precipitação mensal média têm
diferenças nas macro-regiões. Sample Entropy pode refletir a mudança dinâmica da série
de precipitação proporcionando uma nova maneira de investigar a complexidade das séries
hidrológicas. A complexidade apresenta uma variação regional do sistema de recursos hí-
dricos locais que podem influenciar a base para a utilização e desenvolvimento de recursos
em áreas secas.

Palavras-chaves: Precipitação, tendências, Paraíba, entropia.
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Chapter 1
Introduction

Analysis of long-term hydrometeorological variables plays a significant role in water
resources planning and climate studies. In general, global warming intensifies the global
hydrological cycle, thus increasing globally averaged precipitation, evaporation, and runoff
(CLARK et al., 1999). According to Milly et al. (2002), the amount, timing, and distribution
of precipitation, evaporation, temperature, are connected with changes in the hydrologic
cycle and point to changes in the availability of water as well as in the competition for
water resources.

It has been noticeable that the exhaustion of water resources in different parts of the
world is one of the preeminent environmental problems of this century. As reported by
Clark et al. (1999), an important aspect of water resources planning is the analysis of
long-term hydrometeorological variables. The advanced hydrological cycle is altering the
spatiotemporal patterns of precipitation resulting in increased occurrences of precipitation
extremes (EASTERLING et al., 2000). In the outcome of the hydrological global warming
and the resulting alteration of the hydrological cycle, there are growing concerns about
the spatiotemporal patterns of precipitation regimes and the subsequent influences on the
space-time variations of floods and droughts (ZHANG et al., 2013).

Complex climatic systems have properties that cannot be entirely described by under-
standing the parts of the system. As stated by Gallagher et al. (1999), the properties of
the system are different from the properties of the parts, and they depend on the entirety
of the whole; the systemic properties disappear when the system breaks apart while the
properties of the parts are retained.

On the report of Dong & Meng (2013), the long-term influence of various kinds of na-



16

tural factors (solar cycle, landform, geographical position) and human activities (afforesta-
tion and tree planting, hydraulic engineering construction) have led to the complexity in
the characteristics of precipitation series. However, the complexity of water resources
system is ignored when the optimal utilization of water resources issues are investigated,
which makes it difficult to discover the internal information of water resources system and
truly realize the optimal utilization of regional water resources after allocation.

An important factor is that rainfall represents the primary input to the hydrologic
cycle, and can thus be recognized to represent the potential water resources availability
of an area. The disorder (or uncertain) in the intensity and occurrence of rainfall in
time is one of the primary constraints to water resources development and the water use
practices (MARUYAMA et al., 2005). Normally the potential availability of water resources
is measured in terms of cumulative rainfall in the region of interest.

Rainfall is a periodical spatiotemporal phenomenon displaying significant spatial and
temporal variability and rain gauge networks only collect point estimates. Therefore,
providing an estimate of spatial rainfall distribution within an area from rain gauge data
usually remains a barrier of interpolation (MIRÁS-AVALOS et al., 2007).

Rainfall data is the essential input for hydrological systems, this type of data plays
a fundamental role in understanding the hydrological cycle. It is essential an accurate
estimation of precipitation. In developing countries, the availability of rainfall data is
obstructed by the scarcity of precise, high-resolution precipitation. Since its inception,
rainfall measurement principles have remained unchanged; non-recording and recording
rain gauges are still the standard equipment for measuring ground-based precipitation
notwithstanding that they only provide point measurements. According to Ochoa-Sánchez
et al. (2014), rainfall amounts evaluated at different locations are usually extrapolated to
obtain areal-averaged rainfall estimates.

As state in Young (2010), the rational use of water resources has become a major
challenge for developing countries in recent decades. This concern seems from the indis-
criminate use of the vital resource for the maintenance of modern society. The accelerated
economic growth has led to the depletion of natural resources essential for survival and
ecosystems. It is important to note that the responsible use and management of water
resources has been considered a priority to improve the quality of life and, therefore, has
set itself invaluable to free access.

Understanding of the variability of precipitation regime over tropical South America
is crucial because of the strong dependence of water supply, hydro-energy, agriculture, and



17

transportation. Natural irrigation is the essential support of Brazilian agriculture. Hence,
the importance of understanding the mechanism to produce water through precipitation
variability in tropical South America has not only meteorological implications but also
practical applications for the society in the region.

A probable scenario is drawn that due to climate change resulting from the current
global warming the local rainfall pattern would be modified around the world. Nonethe-
less, it is important to establish efficient strategies for water resources development in
conjunction with for meeting actual and future water demands, peculiarities of such a
disorder over a particular region can be the predominant factors in making a decision on
the precedences for development or demarcating the boundaries to formulate the necessity
and availability of development.

Northern South America distinguishes by being an enormous and complex region
where distinct weather systems act. According to Andreoli et al. (2012), Amazon region,
which represents one of the most intense convective areas in the world, and northeast of
Brazil, which is related to intense and prolonged droughts due to its semiarid climate,
are inserted in northern South America. The cooperation between different atmospheric
phenomena that appear in the whole region and local surface conditions (like vegetation,
topography, and land use), generates a non-homogenous rainfall distribution that exhibits
in a wide temporal and spatial range (SIERRA et al., 2015).

As reported by Zhou & Lau (2001) and Takahashi (2004), precipitation variability
in South America has been influenced by particular factors such as Atlantic Sea Surface
Temperature (SST), El Niño-Southern Oscillation (ENSO), and Intertropical Convergence
Zone (ITCZ). Grimm (2011) also considered that the ENSO impact on the characteristics
of Brazil Northeast precipitation is related to the position of ITCZ and Atlantic and
Pacific SST.

In general, it is known that several phenomena have a strong influence on the rainfall
pattern within the Northeastern region of Brazil. One is the (ENSO), a global phe-
nomenon that may cause severe droughts or excess of rainfall conditions depending on its
intensity. Generally, the different phases of ENSO relate to years with below or above nor-
mal rainfall conditions. However, Northeast Brazil has experienced severe drought events
that are not necessarily related to ENSO, but to the influence of different atmospheric
systems that cause rainfall in this region (JUNIOR; ALMEIDA, 2012).

As in most parts of Northeast Brazil, Paraíba State has the following main agroeco-
logical zones: the Mata zone, the Agreste zone, and the Sertão zone (see Figure 1).
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Figure 1: Homogenous climatic regions of Paraíba. Source:(ARAUJO, 2007)

In the Mata zone, there are two important factors for agriculture and water resources:
higher precipitation (over 1,400 mm annually), and relatively fertile soils. This region has
been, since colonization, widely dedicated to sugar cane production. The Agreste zone is
located inland in the Borborema Highlands (between the Mata and Sertão zones), with
an average annual precipitation around 700 mm, distributed irregularly but concentrated
in the period from March to August (which is the season of least evapotranspiration),
with mild night temperatures. The Sertão zone displays higher temperatures, and rains
occur during the hottest months. In the Agreste zone, likewise in the Sertão zone, the dry
season is long, continuing six to seven months and seven to eight months, correspondingly,
with extreme droughts periods every 10 or 11 years (ARIAS; CABALLERO, 2015).

The hydrological series trend analysis is of paramount practical importance due to the
effects of global climate change. Statistical procedures are used for detection of trends
over time. Thus, a variety of statistical test methods have been used to detect trends
in hydrometeorological and hydrological time series; these are classified as parametric
and nonparametric tests (ZHANG et al., 2006; CHEN et al., 2007). Parametric tests are
more robust but request that data be independent and normally distributed, which is
barely true for hydrological time series data. For nonparametric tests, data have to be
independent. However, outliers are better tolerated. The most common nonparametric
tests for working with time series trends is the Mann-Kendall (MANN, 1945; KENDALL,
1975). The Mann-Kendall test is largely one used by researchers in studying hydrologic
and hydrometeorological time series trends (YANMING et al., 2012; WANG et al., 2012; YANG
et al., 2012).
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Geostatistics based on the theory of regionalized variables permits the analysis and
interpretation of any spatially (temporally) referenced data (ISAH, 2009). It is increa-
singly preferred because it capitalizes on the spatial correlation between close observa-
tions to predict attribute values at unsampled locations (GOOVAERTS, 2000). Several
studies Goovaerts (2000), Creutin & Obled (1982), Tabios & Salas (1985), Lebel et al.
(1987) have demonstrated the estimation of precipitation by appropriate geostatistical
tools permits more accurate results than other forms of interpolation. The possibility
of quantifying uncertainty for an interpolated point or area is particularly useful, as it
allows a more meaningful comparison with rainfall estimates generated by other means
(e.g. radar, satellite, or numerical weather models). It also facilitates the investigation of
the propagation of uncertainty in downstream models (e.g. hydrological or agricultural
forecast models). However, interpretation of the kriging variance as an estimate of error
depends on the data obeying the implicit statistical assumptions of kriging, but some
caution may be needed.

The Shannon’s entropy produces a measurement to evaluate rainfall variability. In
recent years, the theory of entropy has been applied to a variety of hydrological varia-
bles. Rajagopal et al. (1987) suggested new perspectives for potential applications of
entropy in water resources. Hydrological modeling using entropy and its application in
water resources were presented by Singh (1989), Singh & Fiorentino (1992). Krstanovic
& Singh (1992), they presented an investigation about information transfer between se-
lected droughts or flood sequences using joint entropy and marginal entropy in long-term
monthly rainfall series. Marginal entropy was used by Maruyama & Kawachi (1998) to
investigate the characteristics of rainfall in Japan. Kawashi et al. (2001) presented isoen-
tropy and isohyetal entropy maps to evaluate a degree of uncertainty of rainfall occurrence
of annual rainfall pattern in Japan. Maruyama et al. (2005) evaluated the disorder by
two different entropies, intensity entropy (IE) and apportionment entropy (AE) to re-
present the disorder in the intensity and occurrence of monthly rainfall in Japan. Silva
et al. (2006) analyzed the complexity and predictability of rainfall related both to high
temporal and spatial variability using entropy concepts. Mishra et al. (2009) presented
an entropy investigation into the variability of precipitation. Using cluster analysis and
entropy theory, Liu et al. (2013) analyzed the rainfall distribution in the Pearl River basin,
China. Rajsekhar et al. (2015) proposed a multivariate drought index (MDI) to evaluate
drought conditions and entropy maps at different time scales. Zhang et al. (2015) also
applied multivariate drought index (MDI) associated with entropy concepts to understand
the spatiotemporal patterns of precipitation regimes in the Huai River basin, China.
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The following chapters show some applications to understand trends and complexity
of rainfall in Paraíba. In chapter 2, the trends and their geostatistical behavior were
investigated. In chapter 3, sample entropy was applied to verify the complexity and
predictability of rainfall. Finally, in chapter 4 a general conclusion was presented to
summarize what was verified and to project further applications with different techniques.
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Chapter 2
Precipitation trend analysis by Mann-Kendall
test: A case study of Paraíba, Brazil

2.1 Introduction

Recently, under a changing environment, some climatic time series have a random
variable tendency. Due to the effects of possible global climate change on water engi-
neering, conducting trend analysis using statistical methods is of paramount practical
importance (ÖNÖZ; BAYAZIT, 2003).

The purpose of the trend test is to determine the increase or decrease of a series over
a period of time (HELSEL; HIRSCH, 1992). Parametric and non-parametric statistical tests
are used to decide whether there is a trend with statistical significance.

Minetti (1998) and Minetti et al. (2003) examined long-term trends in rainfall series
in a variety of rain gauges around South America. They identified during the period from
1931 to 1999 that there was a steady decrease in annual rainfall for an area located west of
the Andes and an increase to the east in the center of Argentina. A third region studied,
further north in Argentina was identified a steady increase in rainfall until mid-1980 when
high occurrences of El Niño caused declines in the indices in precipitation.

Silva et al. (2010) considered rainfall time series throughout Brazil during the period
from 1961 to 2008; the authors found different patterns of increasing and decreasing
rainfall trends. In annual terms, the range further east from Brazil’s Southern region
stands out as an area with significant positive trends from the center of Rio Grande do
Sul to Paraná.
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Pinheiro et al. (2013) analyzed the daily, monthly and annual time series of 18 rainfall
stations in Southern of Brazil. To evaluate the occurrence of precipitation time series the
Mann-Kendall test was used and showed a positive trend to annual extreme daily, total
monthly and annual over time. They realized that there was an increase in rainfall in
most of the analyzed stations with significant trends at 95 % in sixteen complete series
analyzed. Several series have changes in the behavior of its average of the 1970s and
1980s.

Hence, the evaluation of historical trends or future projections on a regional or local
scale is needed. So, in this chapter, an attempt is made to evaluate the trends in the
monthly precipitation series in the Paraíba State, Brazil, and to find if there have been any
significant changes in precipitation trends during 1962 to 2012. We use spatial clustering
analysis to identify spatial explicit and statistically significant rainfall stations. Such
an integrated spatiotemporal analysis facilitates a spatial quantification of precipitation
variability.

2.2 Methodology

The Mann-Kendall test had been formulated by Mann (1945) as a non-parametric
test for trend detection, and the statistical distribution of test had been given by Kendall
(1975) for evaluating non-linear trend and the change point. The test has been extensively
used to detect trends and spatial variation in hydroclimatic series that is, meteorological,
hydrological and agrometeorological time series. Many authors [Tabari & Talaee (2011),
Gocic & Trajkovic (2013), Dias et al. (2013), Sayemuzzaman & Jha (2014)] have used this
test to evaluate the presence of significant climate trends in different parts of the world.

A factor that affects trend detection in a series is the presence of positive or negative
autocorrelation (YUE et al., 2003; NOVOTNY; STEFAN, 2007). A positive autocorrelation
does not guarantee for a series of being detected as having trend. By contrast, for negative
autocorrelation, this is reverse, where the trend is not detected. ρk, the autocorrelation
coefficient of a discrete time series for lag-k, can be expressed as

ρk =
∑n−k
k=1 (xt − x̄t)(xt+k − x̄t+k)[∑n−k

t=1 (xt − x̄t)2 ×∑t=1
n−k(xt+k − x̄t+k)2

] 1
2

(2.1)

where, x̄t and V ar(x̄t) are the sample mean and sample variance of the first (n−k) terms,
respectively, and x̄t+k and V ar(x̄t+k) are the sample mean and the sample variation of the
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last (n − k) terms, respectively. Besides, the hypothesis of serial independence is tested
by the lag-1 autocorrelation coefficient as H0 : ρ1 = 0×H1 : |ρ1| > 0 using the following
statistic

t = |ρ|
√
n− 2
1− ρ2 (2.2)

where, the statistic of the test has a Student’s t-distribution with (n − 2) degrees of
freedom. If occurs that |t| > tα

2
, so the null hypothesis is rejected at the chosen significance

level α (CUNDERLIK; BURN, 2004).

The computational method for the Mann Kendall test considers the time series for
n data points Ri and Rj as two subsets of data where i = 1, 2, . . . , n − 1 and j =
i + 1, i + 2, . . . , n. The data values are measured as an ordered time series. Thus, each
data value is compared with all subsequent data values. If a data value from a later time
period is higher than a data value from an earlier time period, statistic S is incremented
by 1 (DRAPELA; DRAPELOVA, 2011). Further, if the data value from a later time period
is lower than a data value from a previous time period, statistic S is decremented by 1
(SHAHID, 2011). The net result of all such increments yields the final value of S.

Given a time series X = x1, . . . , xn that is ranked from Ri = R1, . . . , Rn the statistic
S is calculated as

S =
∑
i<j

sgn(Rj −Ri). (2.3)

Each data point xi is taken as a reference point which is compared with the rest of the
data points xj such as

Zi = sgn(xj − xi) =


+1, if xj > xi

0, if xj = xi

−1, if xj < xi

(2.4)

(MANN, 1945); (KENDALL; STUART, 1967) reported that when n ≥ 8 statistic S is
approximately normally distributed with

E(S) = 0. (2.5)

The variance is given as

V ar(S) = 1
18[n(n− 1)(2n+ 5)−

m∑
i=1

ti(i)(i− 1)(2i+ 5)] (2.6)

Wherein ti is considered as the number of ties up of sample i, and the summation is over
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all ties. The standardized normal test statistic is calculated as

Z(n) = S

[V ar(S)]1/2 (2.7)

Test statistics Zc is computed as

Zc =



S − 1√
V ar(S)

, if S > 0

0, if S = 0
S + 1√
V ar(S)

, if S < 0

(2.8)

Zc has a standard normal distribution. A positive value of Zc implies an ascendant value
of trend and vice versa. A significant level α is also utilized for testing either an ascendant
or descendant monotone trend, that is, a two-tailed test. If Zc > Zα

2
, where α states the

significant level, so the trend is considered as significant.

2.2.1 Modified Mann-Kendall test

A peculiar problem in detecting and interpreting trends in hydrological data is asso-
ciated with the confusing effect of serial dependence. Pre-whitening is used for detecting
a trend in a time series in the presence of autocorrelation (CUNDERLIK; BURN, 2004).
However, pre-whitening is stated to reduce the rate of detection of significant trend in
the Mann-Kendall test. Therefore, the Modified Mann-Kendall test is used to minimize
the rate of detection of significant trend in the Mann-Kendall test (RAO et al., 2003). In
this work, the autocorrelation between the ranks of observations ρk was estimated after
deducting an estimate of a non-parametric trend.

Significant values of ρk have only been used for calculating the variance correction
factor n/n∗s, as the variance of S is underestimated for the positively autocorrelated data:

n

n∗s
= 1 + 2

n(n− 1)(n− 2) ×
n−1∑
k=1

(n− k)(n− k − 1)(n− k − 2)ρk (2.9)

where n represents the actual number of observations, n∗s is expressed as an effective
number of observations to account for the autocorrelation in the data, and pk is considered
as the autocorrelation function for the ranks of observations (MONDAL et al., 2012).

For calculating the corrected variance we assume as Rao et al. (2003)

V ∗ = V (S)× n

n∗s
(2.10)
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wherein V ar(S) is obtained from Equation (2.6).

2.3 Geostatistical Techniques

Geostatistics has been defined by Matheron (1963) as “the application of probabilistic
methods to regionalized variables” which designates any function displayed in real space.
Different from conventional statistics, whatever the complexity and the irregularity of
the real phenomenon, geostatistics searches to exhibit a structure of spatial correlation.
Geostatistical methods use semivariograms as a core tool to characterize the spatial de-
pendence in the property of interest (LY et al., 2011). Geostatistics uses the concept of
random functions to build a model for physical reality, bringing up these two apparently
contradictory characteristics random and structured. As reported by Gruijter & Marsman
(1985), Heuvelink et al. (1997), its basic apparatus is variogram analysis which contains
the study of the variogram function of specific physical variable value or of a water quality
parameter under study.

2.3.1 Kriging

Kriging is the term used by geostatisticians for a family of generalized least-squares
regression methods that use available data in a specific search neighborhood to estimate
the values at unsampled locations (ISAAKS; SRIVASTAVA, 1989; GOOVAERTS, 1997). As
stated in Berke (1999), it is based on a spatial linear model for the data which specify a
parametric spatial mean function and spatial dependence structure. As stated by Isaaks
& Srivastava (1989), kriging uses a variogram model to characterise spatial correlation.
A variogram describes in terms of variance how spatial variability changes as a function
of distance and direction.

Kriging uses statistical models and allows a variety of map outputs, including predic-
tions, prediction standard errors, probability, etc. Today, a number of variants of kriging
are in general use, such as Simple Kriging, Ordinary Kriging, Universal Kriging, Block
Kriging, Co-Kriging, and Disjunctive Kriging. Among the various forms of kriging, Ordi-
nary Kriging has been used widely as a reliable estimation method (YAMAMOTO, 2000).
In short, Ordinary Kriging is the basic form of kriging. It has been widely used with
rainfall data. The prediction by Ordinary Kriging is a linear combination of measured
values.
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2.3.2 Semivariogram

Semivariogram is a convenient tool for the analysis of spatial dependence structure
(CRASSIE, 1993). If the spatial dependence exists, its degree is quantified by comparing
the models to the experimental semivariogram. Using Eq. 2.11 to compute experimental
semivariogram from the data under study is the only certain way to describe how semi-
variance changes with distance, determine which semivariogram model should be used.
By changing h, both in distance and direction, a set of the sample (or experimental)
semivariograrns for the data is obtained (BURROUGH, 1986)

γ(h) = 1
2N(h)

N(h)∑
i=1

[Z(xi)− Z(xi + h)]2 (2.11)

where γ(h) is the semivariance as well as N(h) is the number of Z(xi) and Z(xi + h),
separated by an h vector. A variety of theoretical models can be utilised to adjust from the
experimental semivariogram to the theoretical semivariogram. Notwithstanding, Johnston
et al. (2001) showed 11 theoretical models.

i) Spherical

γ(h) = (τ 2 + σ2)
3

2

(
h

φ

)
− 1

2

(
h

φ

)3


ii) Exponential

γ(h) = (τ 2 + σ2)
[
1− exp

(
−h
φ

)]

iii) Gaussian

γ(h) = (τ 2 + σ2)
1− exp

(
−3

(
−h
φ

))2


iv) Linear
γ(h) = τ 2 + [h(σ2/φ)]

v) Circular

γ(h) = τ 2 +

(2σ2/π)

(h/φ)
1−

(
h

φ

)2
0,5

+ arcsin(h/φ)



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vi) Tetraspherical

γ(h) = τ 2 +
(

2σ2

φ

)arcsin
(
h

φ

)
+
(
h

φ

)1−
(
h

φ

)2
0,5

+ 2h
3φ

1−
(
h

φ

)2
1,5


vii) Pentaspherical

γ(h) = τ 2 +

σ2

(15h
8φ

)
− 5

4

(
h

φ

)3

−
(3

8

)(
h

φ

)3


viii) Rational Quadratic

γ(h) = τ 2


[
19
(
h
φ

)2
]

[
1 + 19

(
h
φ

)2
]


ix) Hole Effect

γ(h) = τ 2 +

σ2

[
1− sin

(
2πh
φ

)]
sin

(
2πh
φ

)


x) K-Bessel

γ(h) = τ 2 + σ2

1−

(Ωθkh
φ

)θk
2θK−1 Γ (θk)

Kθk

(
Ωθkh

φ

)
where Ω is the numeric value of γ(h) = 0.95τ 2 for any θk. Kφ is the modified Bessel
function of second and order φ (ABRAMOWITZ; STEGUN, 1964).

xi) J-Bessel

γ(h) = τ +

σ2

1−

2τ2+σ2Γ (τ 2 + σ2 + 1)
Ω(

τ2×h
φ

)
 J(τ2+σ2)


(

Ω(τ2+σ2)×h

φ

)
J(τ2+σ2) is the J-Bessel function (ABRAMOWITZ; STEGUN, 1964).

Applying the algorithm of weighted least squares (WLS), these models were adjusted
to the experimental semivariogram, and the subsequent model parameters were defined:
nugget effect σ2, sill τ 2 + σ2, and range φ. In order to verify the existence of spatial
dependence, the spatial dependence index (SDI), proposed by Cambardella et al. (1994),
was applied, which is the ratio representing the percentage of data variability explained
by spatial dependence. The SDI is estimated as follows: SDI = [τ 2/(σ2+τ 2)]×100, being
classified as strong (SDI≤ 25%), medium (25 < SDI < 75%), and low (SDI ≥ 75%).
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2.3.3 Cross-Validation

Goovaerts (1997) argues that cross-validation allows comparing the impact of inter-
polators among the real estimated values, in which the model with more accurate pre-
diction is chosen. Cross-validation allows determination of models that provide the best
prediction (JOHNSTON et al., 2001). The cross-validation technique was used to select
the semivariogram model (WEBSTER; OLIVER, 2007). Faraco et al. (2008) recognized
the cross-validation criterion as the most adequate for choosing the best semivariogram
adjustment. The semivariogram models were tested for each parameter data set. The
quality of prediction performances was assessed by cross-validation. Cross-validation was
conducted to assess the accuracy of Ordinary Kriging through some statistical measure-
ments as follows:

Mean Prediction Errors (ME)

ME =
n∑
i=1

[
Ẑ(ti)− Z(ti)

]
n

(2.12)

Mean Standardized Prediction Errors (MS)

MS =
∑n
i=1

[Ẑ(ti)−Z(ti)]
σ̂ti

n
(2.13)

Root Mean Square Error (RMSE)

RMSE =

√√√√√ n∑
i=1

([
Ẑ(ti)− Z(ti)

])2

n
(2.14)

Average Standardized Error (ASE)

ASE =
√∑n

i=1 σ̂ti
n

(2.15)

Root Mean Squared Standardized Error (RMSSE)

RMSSE =

√√√√√∑n
i=1

[Ẑ(ti)−Z(ti)]
σ̂ti

n
(2.16)

According to Johnston et al. (2001), to evaluate a model that provides accurate predic-
tions, the Standardized Prediction Errors (MS) should be close to 0, the Square Root of
Standardized Mean Error (RMSSE) should be close to 1. The Average Standard Error
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(ASE ) and the Root Mean Square Error (RMSE) and should be as small as possible. In
order to verify the best choice among J different fitted models and their MS values close
to 0 and RMSSE values close to 1, Santos et al. (2012) suggested Error Comparison Index
(ECI), which can be calculated as follows:

ICEi = Ai +Bi (2.17)

where,

Ai =


ABS(MS)i

MAX(ABS(MS)) , when MAX(ABS(MS)) > 0

1, when MAX(ABS(MS)) = 0
(2.18)

Bi =


ABS(RMSS − 1)i

MAX(ABS(RMSS − 1)) , when MAX(ABS(RMSS − 1)) > 0

1, when MAX(ABS(RMSS − 1)) = 0
(2.19)

The best-fitted model among J different models is one which presents the lowest ECI
value.

2.4 Data preprossessing

2.4.1 Study area

The study was carried out in Paraíba State, located in Brazilian Northeast, as shown
in Figure 2. The Brazil Northeast has 1.5 × 106 km2 of area ranging between 1 − 18◦S
and 35− 47◦W , the region is influenced by different meteorological systems with distinct
characteristics (FILHO et al., 2014). As stated in Liebmann et al. (2011), Kovadio et al.
(2012), in Northeast extreme events are related to deficit precipitation (semiarid region) or
excess precipitation (capitals or coast regions). Nevertheless, the amount of precipitation
in Paraíba is related to various meteorological systems: Intertropical Convergence Zone
(ITCZ), High-Level Cyclone Vortex (HLCV), Jet Streams. According to Macedo et al.
(2010), and it is one of the Brazilian states which presents a marked water scarcity, as it
has a semi-arid climate in most of its territory.
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2.4.2 Data

The data required for calculation of trends was obtained for a total of 69 precipitation
stations having a common period from 1962 to 2012. The data were collected from
Instituto Nacional de Meteorologia (INMET) and acquired by Unidade Acadêmica de
Ciências Atmosféricas (UACA-UFCG). Rainfall gauges present a homogeneous spatial
distribution around the state and include all micro-regions of Paraíba state. The spatial
locations of stations are shown in Figure 2 and their geographical locations are shown in
Table 1.

Figure 2: Spatial distribution of 69 precipitation stations used in the study.
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Table 1: Geographical coordinates of precipitation stations
used in the study.

Number Code Name Longitude Latitude
1 3940819 Alhandra -34,9106 -7,4256
2 3849384 Cruz do Espírito Santo -35,0911 -7,1408
3 3940226 João Pessoa/DFAARA -34,8333 -7,0833
4 3839679 Mamanguape -35,1214 -6,8356
5 3849232 Caldas Brandão -35,3244 -7,1025
6 3849636 Itabaiana -35,3375 -7,3250
7 3849545 Pilar -35,2608 -7,2675
8 3849254 Sapé -35,2233 -7,0925
9 3839727 Araçagi -35,3878 -6,8333
10 3839208 Caiçara -35,4681 -6,6147
11 3848579 Ingá -35,6119 -7,2925
12 3838962 Areia -35,7178 -6,9756
13 3838575 Bananeiras -35,6342 -6,7514
14 3838675 Serraria -35,6386 -6,8192
15 3838055 Araruna -35,7397 -6,5314
16 3827973 Cuité -36,1492 -6,4850
17 3837953 Olivedos -36,2436 -6,9886
18 3848428 Campina Grande/EMBRAPA -35,9042 -7,2256
19 3845045 Patos -37,3131 -7,0008
20 3882792 Monteiro -37,1269 -7,8850
21 3838526 Casserengue/Salgado, St. -35,8944 -6,7931
22 3847188 Pocinhos -36,0592 -7,0778
23 3858065 Aroeiras -35,7111 -7,5458
24 3847979 Boqueirão/Boqueirão, Aç. -36,1358 -7,4908
25 3857044 Cabaceiras -36,2869 -7,4922
26 3856828 Camalaú -36,8256 -7,8900
27 3856498 Caraúbas -36,4903 -7,7253
28 3856667 Congo -36,6586 -7,8022
29 3847505 Gurjão -36,4892 -7,2478
30 3855383 Prata -37,0842 -7,6950
31 3857471 Riacho de Santo Antônio -36,1561 -7,6942
32 3846969 Serra Branca -36,6600 -7,4819
33 3847128 Soledade -36,3619 -7,0608

Continued on next page
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Table 1 – (continued)
Number Code Name Longitude Latitude
34 3856008 Sumé/Bananeiras, Fz. -36,9631 -7,5069
35 3846739 São José dos Cordeiros -36,8058 -7,3908
36 3866128 São João do Tigre -36,8472 -8,0800
37 3865397 São Sebastião do Umbuzeiro -37,0097 -8,1517
38 3846434 Taperoá -36,8281 -7,2164
39 3846185 Juazeirinho -36,5800 -7,0683
40 3837507 Pedra Lavrada -36,4644 -6,7553
41 3824396 Belém do Brejo do Cruz -37,5356 -6,1864
42 3825701 Brejo do Cruz -37,4997 -6,3483
43 3824751 Catolé do Rocha -37,7467 -6,3439
44 3834137 Jericó -37,8000 -6,5500
45 3824992 Riacho dos Cavalos/Jenipapeiro dos Carreiros -37,6531 -6,4353
46 3845583 Desterro -37,0881 -7,2903
47 3845703 Imaculada -37,5094 -7,3822
48 3854036 Jurú -37,8067 -7,5478
49 3853467 Manaíra -38,1525 -7,7069
50 3845514 Mãe dťÁgua -37,4253 -7,2572
51 3845448 Teixeira -37,2497 -7,2217
52 3854072 Água Branca -37,6367 -7,5119
53 3832789 Cajazeiras -38,5444 -6,8942
54 3852197 Conceição -38,5019 -7,5600
55 3833018 Uiraúna -38,4092 -6,5231
56 3843166 Aguiar -38,1733 -7,0933
57 3834877 Condado -37,5947 -6,9231
58 3844008 Coremas/Coremas, Aç. -37,9428 -7,0250
59 3834894 Malta -37,5197 -6,9033
60 3843992 Nova Olinda -38,0425 -7,4819
61 3844448 Olho d‘Água -37,7506 -7,2278
62 3845289 Passagem -37,0475 -7,1364
63 3834538 Pombal -37,8006 -6,7719
64 3836715 Santa Luzia -36,9181 -6,8681
65 3845113 Santa Terezinha -37,4450 -7,0842
66 3833285 São Francisco -38,0947 -6,6178
67 3833869 São José da Lagoa Tapada -38,1619 -6,9422
68 3835882 São Mamede -37,1036 -6,9306

Continued on next page
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Table 1 – (continued)
Number Code Name Longitude Latitude
69 3834389 Vista Serrana/Desterro da Malta -37,5683 -6,7386

2.5 Results and Discussion

In this section, we present trend analysis results for monthly precipitation. In order
to choose the best-fitted model that would predict the trend of precipitation in Paraíba,
we used cross validation. The cross validation that examines the validity of fitted models
and parameters of semivariograms for precipitation parameters are given in Table 2 and
Table 3. Data analysis and Mann-Kendal test were done using Team (2014), and spatial
trends, experimental semivariograms and geostatistical analysis were done using ArcGis
(ESRI., 2014).

According to Owolawi & Afullo (2007), Sana et al. (2014), the RMS statistic is widely
used to select a semivariogram model or an implementation method. Along with RMS,
the ASE statistic is used to validate statistical models. Therefore, the knowledge of
obtaining the lowest ASE value and closest statistic RMS benefits in choosing the best
model. On the verification by RMSS, MS, ASE and RMS statistics may generate a small
distraction, we used the Error Comparison Index (ECI) suggested by Santos et al. (2012)
because it helped compare the statistics used in cross validation process and chose the
best geostatistical model by the lowest ECI value.

One can note from Table 2 that the model selection which presents the best semi-
variogram fit may include all errors of prognosis in an integrated manner. Nonetheless,
in January the circular model showed the lower ECI value, that is, 0.0559; even showed
a moderate SDI classification as reported by Cambardella et al. (1994). For February,
the model which presented the lowest ECI (0.6012) was the pentaspherical. February is a
month of transition, that is, starts a new precipitation cycle (which impacts directly the
trend), the end of rainy season in Paraíba hinterland region and the beginning of rainy
season in the coastal region.

In March, the Gaussian model presented the lowest ECI value (0.1528). The tetra-
spherical model showed the lowest ECI value (0.5380) in April; Gomes et al. (2014), which
also studied precipitation trends in Paraíba, suggested Mátern model. In May, the lowest
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ECI (0.2343) was showed by K-Bessel model and SCI approximately zero which featured
a strong spatial dependence as stated in (CAMBARDELLA et al., 1994).

In June, the rational quadratic showed the lowest ECI value (0.3872) and a modera-
te spatial dependence. In July, the pentaspherical model showed the lowest ECI value
(0.8411) but very close to the spherical model which showed an ECI value of (0.8500).
Ly et al. (2011) conducted a study with daily data in a 30-year period by comparing the
ratio of influence of precipitation in catchment areas of Belgium, and realized a significant
occurrence of the pentaspherical model. Similar to March, the gaussian model showed
the lowest ECI value (0.6077) in August.

Nevertheless, similar to April the tetraspherical model showed the lowest value of ECI
(0.8071) in September; this value is not too far from the spherical model ECI value. As
stated in Cambardella et al. (1994) the model showed a moderate spatial dependence. In
October, the exponential model showed the lowest value of ECI (0.6617). In contrast,
Viola et al. (2014) studied the distribution and the erosive potential of rains (October
to April) and the exponential model not suited. Thus, in November the spherical model
showed the lowest ECI value (0.8031) was as stated in Viola et al. (2014) who highlighted
the influence of the spherical model in this period.

Similar to July, in December the rational quadratic model was the one with the lowest
value of ECI (0.7735).
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Table 2: Values of MS, RMSE, MS, RMSSE, ASE and
spatial dependency index (SDI) and error comparison in-
dex (ECI) for trends of precipitation between January
and December.

Month Model ME RMSE MS RMSSE ASE SDI ECI

Ja
nu

ar
y

Gaussian -0.0069 0.935 -0.004 0.996 0.947 51.29 0.224
Exponential 0.0141 0.953 0.011 0.993 0.970 26.95 0.516
Spherical 0.0034 0.941 0.003 0.9991 0.950 41.29 0.162
Circular -0.002 0.936 -0.0011 0.999 0.946 42.78 0.058
Rational Quadratic 0.0116 0.953 0.006 0.981 0.980 39.95 0.498
Tetraspherical 0.0048 0.942 0.004 0.997 0.954 40.16 0.199

Fe
br
ua

ry

Spherical -0.0148 0.957 -0.009 1.039 0.912 43.24 0.800
Circular -0.0282 0.958 -0.021 1.047 0.907 47.69 1.130
Hole Effect -0.0231 1.035 -0.020 1.060 0.970 45.19 1.332
K-Bessel -0.0137 0.947 -0.009 1.033 0.905 0 0.706
Tetraspherical -0.0184 0.955 -0.014 1.031 0.917 39.07 0.759
Pentaspherical -0.0146 0.953 -0.0114 1.025 0.920 34.90 0.601

M
ar
ch

Gaussian -0.0013 1.2012 0.0037 0.999 1.199 53.49 0.152
Exponential -0.0382 1.0708 -0.0171 0.963 1.118 14.24 1.396
Spherical -0.0075 1.1362 -0.0003 0.977 1.165 38.21 0.461
Quadratic -0.0415 1.0156 -0.0181 0.949 1.094 19.21 1.718
Tetraspherical -0.0076 1.1172 0.0001 0.978 1.147 33.33 0.428
Pentaspherical -0.0075 1.1032 0.0008 0.980 1.133 29.03 0.417

A
pr
il

Gaussiano -0.0600 1.2102 -0.0417 0.990 1.228 48.03 1.045
Spherical -0.0491 1.2082 -0.0344 0.992 1.223 27.40 0.857
Circular 0.0637 1.2059 -0.0441 0.986 1.228 38.24 1.139
Hole Effect -0.0333 1.1836 -0.0251 0.906 1.286 23.16 1.566
Rational Quadratic -0.0406 1.1738 -0.0272 0.946 1.236 0.09 1.182
Tetraspherical -0.0327 1.2097 -0.0227 0.997 1.21 16.80 0.538

Continued on next page
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Table 2 – (continued)
Month Model ME RMSE MS RMSSE ASE SDI ECI

M
ay

Gaussian -0.04311 1.0121 -0.0322 1.034 0.980 34.35 1.282
Spherical -0.03757 1.0025 -0.0258 1.037 0.973 9.88 1.159
Circular -0.0535 1.0176 -0.0393 1.051 0.969 18.39 1.687
K-Bessel -0.0159 0.9927 -0.0086 1.001 0.986 0 0.234
J-Bessel -0.01634 0.9995 -0.0124 1.006 1.005 0 0.404
Tetraspherical -0.0417 1.0229 -0.0308 1.044 0.979 2.72 1.373

Ju
ne

Gaussian 0.0066 2.0526 0.0035 1.120 1.798 28.54 1.154
Exponential -0.0019 2.0570 -0.0011 1.068 1.913 0 0.613
J-Bessel -0.0471 2.1392 -0.0232 1.066 2.001 54.15 1.550
Rational Quadratic -0.0082 2.0497 -0.004 1.024 1.9784 26.36 0.387
K-Bessel 0.0025 2.0516 0.0014 1.1007 1.831 30.17 0.897
Pentaspherical 0.0106 2.0539 0.0054 1.055 1.921 22.30 0.689

Ju
ly

Spherical -0.02610 0.9658 -0.0214 0.983 0.988 52.34 0.850
Circular -0.0349 0.9628 -0.0298 0.988 0.978 52.33 1.015
Hole Effect -0.0393 0.9750 -0.0345 0.972 1.007 72.59 1.366
Pentaspherical -0.0186 0.9664 -0.0144 0.968 1.004 53.08 0.841
Rational Quadratic -0.0376 0.9804 -0.0339 0.926 1.058 68.80 1.982
J-Bessel -0.0263 0.9586 -0.0220 0.962 1.004 64.77 1.147

A
ug

us
t

Gaussian -0.0021 1.3396 -0.0003 1.047 1.275 60 0.607
Exponential 0.0112 1.2936 0.0087 1.043 1.236 31.59 1.217
Spherical 0.0062 1.3228 0.0055 1.055 1.250 50.11 1.113
Circular 0.0029 1.3328 0.0031 1.059 1.254 52.20 0.970
J-Bessel -0.0123 1.3363 -0.0084 1.082 1.232 57.42 1.669
Rational Quadratic 0.0168 1.2897 0.0126 1.069 1.205 30.26 1.842

Se
pt
em

be
r

J-Bessel 0.0043 1.1225 0.0037 1.054 1.065 51.11 1.073
Rational Quadratic 0.0133 1.1327 0.0104 1.076 1.053 36.05 1.993
Tetraspherical -0.0032 1.1208 -0.0028 1.040 1.078 39.34 0.807
Gaussian -0.0045 1.1363 -0.0042 1.05 1.071 49.78 1.161
Exponential 0.0094 1.1416 0.0080 1.076 1.060 26.92 1.772
Spherical 0.0016 1.1274 0.0012 1.061 1.061 39.73 0.916

Continued on next page
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Table 2 – (continued)
Month Model ME RMSE MS RMSSE ASE SDI ECI

O
ct
ob

er

Gaussian -0.0241 1.4932 -0.0143 1.071 1.391 46.52 1.412
Exponential -0.0269 1.5077 -0.0141 0.991 1.524 67.31 0.661
Spherical -0.0283 1.5061 -0.0158 1.051 1.437 53.15 1.234
K-Bessel -0.0175 1.4874 -0.0095 1.065 1.394 47.43 1.146
J-Bessel -0.0168 1.4950 -0.0089 1.059 1.409 55.54 1.053
Pentaspherical 0.0385 1.1594 0.0249 1.085 1.452 25.70 1.999

N
ov
em

be
r

Exponential -0.0054 1.0956 -0.0040 1.041 1.047 51.55 1.117
Spherical 0.0004 1.0790 0.0024 1.032 1.043 62.67 0.803
Circular -0.0049 1.0825 -0.0023 1.036 1.041 63.86 0.879
K-Bessel -0.0135 1.0870 -0.0111 1.032 1.049 70.77 1.592
J-Bessel -0.0120 1.0731 -0.0087 1.051 1.019 67.38 1.728
Rational Quadratic -0.0126 1.1140 -0.0107 1.055 1.048 54.67 1.961

D
ec
em

be
r

Gaussian 0.0288 1.1308 0.0195 1.062 1.044 48.04 1.326
Exponential 0.0303 1.1396 0.0199 1.041 1.076 17.19 1.150
Spherical 0.0384 1.1408 0.0248 1.077 1.0393 28.58 1.660
Circular 0.0311 1.1372 0.0206 1.074 1.0392 36.77 1.478
Rational Quadratic 0.0254 1.1339 0.018 1.007 1.1106 55.33 0.773
Hole Effect 0.0349 1.1146 0.0216 1.108 0.996 41.18 1.827
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Table 3: Variographic parameters of experimental semivariogram for rainfall trends in
Paraíba.

Month Variographic parameters

Ja
nu

ar
y τ̂ 2 0.5613

σ2 0.7509
τ̂ 2 + σ̂2 1.3125
φ̂ 1.3949

Month Variographic parameters

Fe
br
ua

ry τ̂ 2 0.31365
σ2 0.58504
τ̂ 2 + σ̂2 0.89869
φ̂ 0.72139

Month Variographic parameters

M
ar
ch

τ̂ 2 1.17701
σ2 1.02311
τ̂ 2 + σ̂2 2.20012
φ̂ 1.9136

Month Variographic parameters

A
pr
il

τ̂ 2 0.27912
σ2 1.38172
τ̂ 2 + σ̂2 1.66084
φ̂ 0.57556

Month Variographic parameters

M
ay

τ̂ 2 0
σ2 1.22825
τ̂ 2 + σ̂2 1.22825
φ̂ 0.5755

Month Variographic parameters

Ju
ne

τ̂ 2 1.02348
σ2 2.85857
τ̂ 2 + σ̂2 3.88205
φ̂ 0.55513

Month Variographic parameters

Ju
ly

τ̂ 2 0.59547
σ2 0.52618
τ̂ 2 + σ̂2 1.12165
φ̂ 1.07346

Month Variographic parameters

A
ug

us
t τ̂ 2 1.41874
σ2 0.94568
τ̂ 2 + σ̂2 2.36442
φ̂ 2.07576

Month Variographic parameters

Se
pt
em

be
r τ̂ 2 0.79313

σ2 1.22278
τ̂ 2 + σ̂2 2.01591
φ̂ 2.07576

Month Variographic parameters

O
ct
ob

er τ̂ 2 1.93543
σ2 0.93967
τ̂ 2 + σ̂2 2.8751
φ̂ 1.30947

Month Variographic parameters

N
ov
em

be
r τ̂ 2 0.81326

σ2 0.48429
τ̂ 2 + σ̂2 1.29755
φ̂ 1.4994

Month Variographic parameters

D
ec
em

be
r τ̂ 2 0.75012

σ2 0.60538
τ̂ 2 + σ̂2 1.3555
φ̂ 1.55466
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The variograms for the ordinary kriging are presented in Table 3. Parameters were
obtained by using measurement errors to estimate nugget, global variance to estimate
the sill and the mean distance to the nearest neighbor to estimate the range. Using the
parameter estimation, we can obtain the semivariogram’s equation as follows:

January

γ̂(h) = 0.5613 +

1.5018
π
×

 h

1.39495×
1−

(
h

1.39495

)2
2.5

+ arcsin
(

h

1.39495

)


February

γ̂(h) = 0.31365 +

0.58504×
 15h

5.77112 −
5
4×
(

h

0.72139

)3

− 3
8 ×

(
h

0.72319

)5


March

γ̂(h) = 2.20012
1− exp

−3
(

h

1.9136

)2


April

γ̂(h) = 0.27912 +
(0.55824

0.57556

)
×

[
arcsin

(
h

0.57556

)
+
(

h

0.57556

)(
1−
(

h

0.57556

)2
)0.5

+
2h

1.72668

(
1−
(

h

0.57556

)2
)1.5

]

May

γ̂(h) = 1.22825
[

1− (Ωθkh)Ωθk

2Ω−1
k Γ(θk)

Kθk

(
Ωθk

0.5755

)]
.

Where, Ωθk is a numerical value so that γ(h) − 0.95(τ 2 + σ2) for any Ωk. Γ(θk) is
the gamma function, and Kθk is the modified Bessel function of second order θk.

June

γ̂(h) = 1.02348×


19×

(
h

(1.02348)2

)2
 /

1 + 19
(

h

1.02348

)2


July

γ̂(h) = 0.59547 +

(0.52618)×
( 15h

8.58768

)
− 5

4×
(

h

1.07346

)3

− 3
8

(
h

1.07346

)2

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August

γ̂(h) = 2.36442
1− exp

−3
(

h

2.07576

)2


September

γ̂(h) = 0.79313 +
(2.44556

2.07576

)
×

[
arcsin

(
h

2.07576

)
+
(

h

2.07576

)(
1−
(

h

2.07576

)2
)0,5

+
2h

6.22728

(
1−
(

h

2.07576

)2
)1.5

]

October

γ̂(h) = 2.8751
[
1− exp

(
−h

1.30947

)]

November

γ̂(h) = 1.29755
3

2

(
h

1.4994

)
− 1

2

(
h

1.4994

)3


December

γ̂(h) = 0.75012×


19×

(
h

(1.55466)2

)2
 /

1 + 19
(

h

1.55466

)2

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Figure 3: Spatial variation of monthly rainfall trends (mm/month) for Paraíba from 1962
to 2012.
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The successful performance of a method depends on numerous factors, in particular,
temporal and spatial resolutions of data, and parameters of the model, such as the semi-
variogram in the case of kriging. Figure 3 on the top left shows the trend interpolation map
for January adjusted according to ECI results shown in Table 2. One can see a high con-
centration of increasing trends in the north of Sertão region and in the central part of the
state with a slight displacement to Planalto da Borborema and Agreste region. Carvalho
et al. (2004) emphasized the influence of South Atlantic Convergence Zone (SCAZ) over
the maximum values of precipitation in Northeast of Brazil. The intraseasonal anomalies
in precipitation are related to anomalies of Pacific Ocean. In February, different from
January, there is an increase of significant trends in the North of Sertão region and an
intensified displacement between Borborema and Agreste and until the North of Mata
region. These results are in agreement with (CARVALHO et al., 2004).

In March, it is conceivable that there is a huge concentration of trends between Bor-
borema and Agreste and not so significant in the North of Mata. This is related to the end
of rainy season between the months of January and February. In April, the interpolation
map shows increasing trends in the North and West of Sertão as well as appearance of
trends in the North and South of Mata with great influence over the coast. In the study
of Rodrigues et al. (2011) it was verified, regarding seasonal rainfall distribution, that in-
creasing trends take place during March, April and May (autumn in South Hemisphere)
caused by the influence of El Niño and La Niña phenomena.

In May, there is a strong increase of trends in the West of Sertão and in the South of
Borborema, also noticeable is a sensible increase of trends in the North of Agreste region
and in the South of Mata region. Rodrigues et al. (2011) related this displacement of
trends to the occurrence of El Niño and La Niña. In June, one realizes that there is
a strong increase of the trends in the region over the Southern Borborema region. An
increase of the trend can be visualized in the South of Mata region. Rodrigues et al.
(2011), regarding the seasonal distribution of precipitation, observed a negative trend
intensity during the months of June, July and August (winter in South Hemisphere), not
the periods of extreme events.

In July, there was a concentration of an increasing trend almost in the entire region
further west of Sertão and a large displacement in the southernmost of Borborema. Ano-
ther displacement of trends can be visualized from the North of Agreste through North
and South of Mata addressing the coast. In August, there was a huge concentration of
the increase of trends in South Central Borborema region with a sensible movement to
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Agreste region.

In September, there was an increase of trends in the Northwest and South of Sertão
region and a substantial concentration in the South of Borborema region with a slight
movement to Sertão and Agreste. In October, for the first time, there was a predominance
of increasing trends in the unbroken range of Paraíba, that is, much of Sertão, Borborema
and North of Agreste region. This predominance was also described by Gomes et al. (2014)
which detailed the displacement of precipitation associated with various meteorological
system activities, such as: ICTZ, cold fronts, etc. As stated in Uvo et al. (1998), when the
ITCZ does not reach its most southern position (close to the northeast) droughts appears
in the Northeast Brazil, but when the ITCZ stays longer in the south, heavy rains occur
in this region. The anomalies in the ITCZ shifts are mainly produced by variations in the
SST interhemispheric gradient in the Atlantic ocean.

In November, it was clear that the significant values for the increasing trends were
found in the Northwest of Sertão and in the range between the Southern region of Bor-
borema and in the North of Agreste region. In the month of December, the last but not
least, unlike the months of October and November, there was not a continuation of the
increase of trend in any region of Paraíba. However, significant increases were observed in
the northwest and northeast of Sertão, central and South Borborema region and north of
Agreste. The mixed existence of positive and negative trends, along with the differences
in the results referring to the particular observed time interval, does not allow to draw
conclusions of an ordinary tendency for the investigated large-scale area. Illustrated ana-
lysis describes the observational evidences of potential dynamics in cumulative, monthly
precipitation, and they have been applied at the point scale to each selected gauged site.

Figure 4 shows the spatial distribution of standardized monthly trend errors from Ja-
nuary to December. January and February noticed a higher concentration in the regions
where trends showed higher significant values. This is in agreement with the proper choice
of the model.

In March, the errors were mostly well distributed in the central region evidencing
uniformity in Sertão, Borborema and Agreste. In April, one can see that errors were
essentially well distributed in the region ranging from Borborema until Mata, as well as
the South of Agreste and Sertão.

It is interesting to note that in May, the errors are almost homogeneously distributed
throughout Paraíba, highlighting Borborema region. Similarly in June, it was found that
the errors are almost evenly distributed in Borborema and Mata regions, the highest
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concentration in the regions with the largest increases in trends.

In July, the errors are well distributed in the central region of Paraíba (much of Sertão
and Borborema regions), there is a certain homogeneity in the Mata region. Equivalent to
July, in August the errors are well distributed in central region (particularly Borborema
region), there is also a certain homogeneity in the Sertão and Mata regions. In September,
one can see almost the same characteristics as presented in the previous month.

The distribution of standard monthly trend errors for the month of October showed
that the errors are mostly well distributed over much of Sertão region, Borborema and
North of Agreste region. In November, it is observed that the errors are distributed largely
in the Northwest of Sertão region, and in the range between Borborema’s Southern region
to North of Agreste region. In December, the errors are mostly well distributed largely
in regions where there has been an increasing trend as well as in Southern Agreste region
and almost the entire region of Mata and Coast of Paraíba.

Somehow the density can tell where clusters in our data exist, but not if clusters are
statistically significant. Figure 5 shows hot spots analysis for rainfall trends in Paraíba.
According to (ESRI) (2014), this tool identifies statistically significant spatial clusters of
high values (hot spots) and low values (cold spots). It automatically aggregates incident
data (e.g precipitation, deforestation and so on), identifies an appropriate scale of analysis,
and corrects for both multiple testing and spatial dependence. This tool interrogates data
in order to determine settings that will produce optimal hot spot analysis results. Hot
spot analysis uses vectors (not rasters) to identify the locations of statistically significant
hot spots and cold spots in data. A high Z-score and a small P value for a feature (in our
study rainfall trends) indicate a significant hot spot. A low negative Z-score and small P
value indicate a significant cold spot. The higher (or lower) the Z-score, the more intense
the clustering. A Z-score near zero means no spatial clustering.

In January, hot spots were found in the North of Agreste, specifically for Casserenge,
Araruna, Areia, Caiçara, Bananeiras, Araçagi precipitation stations (see Tabel 1 and
Figure 2 for more detail), all values showed 99% confidence. There was no evidence of
cold spots, that is, it means no decreasing trends for this month in the period studied.
In February, the hot spots were between Borborema and Agreste, that is, there was a
displacement as compared with the previous month. Serra Branca and Areia showed 95%
confidence. On the other hand, Imaculada, Jurú and Água Branca showed cold spots a
level of 95% confidence, this fact is related to the low tendency of rainfall in the Sertão.

In March, hot spots are concentrated between Agreste and Borborema, especially São
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José dos Cordeiros, Serra Branca, Gurjão, Olivedos, Soledade which showed a level of
99% confidence. The cold spots moved from the South to the North of Sertão, especially
for Belém do Brejo da Cruz, Catolé do Rocha, Jericó, Riacho dos Cavalos which showed
a level 99% of confidence. The following month there was a reversal of hot and cold spots.
Northern and West of Sertão showed the hot spots values, highlighting Brejo da Cruz,
Cajazeiras, Uiraúna precipitation stations which showed a level of 99% confidence, this
was confirmed by trend analysis. The precipitation station of Água Branca showed the
high level of cold spots at a level of 99% confidence; this is related to the decreasing of
rainfall trends in the region.

In May, the hot spots moved from Sertão to the center of the state; this is influenced by
changes in the rainfall regime. Taperoá, Brejo da Cruz, São Mamede precipitation stations
showed a level of 95% confidence. The totality of cold spots values is concentrated in the
Mata region. Caldas Brandão, Cruz do Espírito Santo, Mamanguape, Sapé precipitation
stations exhibited a level of 99% confidence. In June the hot spots values are concentrated
in the Borborema region, especially Caraúbas, Serra Branca, São José dos Cordeiros which
showed a level of 99% confidence. The cold spots are located in the center of the Sertão
region and only Olho D’Água precipitation station showed a level of 95% confidence.

In July, the cold spots values are located in the South of Sertão and in the center of
Borborema region, especially Olivedo and Taperoá precipitation stations. On the other
hand, hot spots values are located in the Northwest of Sertão, especially Cajazeiras and
Uiraúna precipitation stations and at Serra Branca precipitation station in the center
of the Borborema region. In August we can observe that hot spot values are located at
the borderline between Sertão and Borborema regions, this is related to rainy periods
in Borborema; especially Cabaceiras, Gurjão, Serra Branca and São José dos Cordeiros
where the precipitation stations showed the highest trend values. The cold spot values are
located in the South of Borborema region and also concentrated in the center of Sertão,
especially Condado, Coremas, Olho D’água and Pombal precipitation stations.

In September, the hot spots values are still in the same region of previous month but
more precipitation stations showed statistically significant trends; emphasis for Gurjão,
Serra Branca, São José dos Cordeiros, Taperoá. The cold spots moved from Borborema
to Mata region, this is related to Spring season which is characterized by nonoccurrence
of rainy periods specifically in the Mata region. In October, the hot spots values barely
showed statistically significant trends, except in Cuité which is located in Borborema’s
North and Pocinhos which is also located in the Borborema region. The cold spots values,
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as observed in the previous month, are located in theMata region too, especially Alhandra,
Cruz do Espírito Santo, Caldas Brandão and Itabaiana.

In November, the hot spots values scattered through Borborema region and also ap-
peared in the southwest of Sertão region, especially Olivedos, Serra Branca and Soledade
which showed a level of 99% confidence. The majority of cold spots are located in the
Mata region, especially Cruz do Espírito Santo, Caldas Brandão, Itabaiana, Pilar but a
modest concentration is also located in the south of Sertão region. In December, the hot
spots values are concentrated in the Sertão region, this month represents the beginning
of rainy season, especially Patos, Malta and Vila Serrana/Desterro da Mata. The cold
spots showed a behaviour similar to the previous month but a displacement is noticeable
through Borborema region.
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Figure 4: Spatial variation of monthly rainfall trends prediction errors for Paraíba from
1962 to 2012.



48

Figure 5: Hot Spots analysis for monthly rainfall trends for Paraíba from 1962 to 2012.
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2.6 Conclusions

In this chapter, we analyze rainfall trends over the entire Paraíba State where sig-
nificant changes in rainfall trends have occurred during all months. It is noticeable that
rainfall trends vary across the state for some reasons (e.g. topography, forest cover, ITCZ,
distance from coast). The impact of possible changes in rainfall trend intensity adds com-
plexity to the implications of our results. Average rainfall trend levels may vary slightly,
but if rain falls simply at one time in the seasonal calendar or too early or too late in the
agricultural cycle, and then everything which is related may suffer.

For a better understanding of trends, monthly rainfall trend maps have been gener-
ated by following a methodology that includes geostatistical techniques. Geostatistical
algorithms were applied to estimate rainfall trend patterns from data recorded at 69 rain-
fall stations distributed across the state. The hot spots analysis over all rainfall stations
reveals increasing (decreasing) trends that, associated with public policies, facilitates an
overview of scarcity of resources to understand the rainfall phenomenon and the low
rainfall level during the drought period which affects most parts of the State.

It is worthwhile emphasizing that the trend results presented in this study were not
sufficient to approve climatic change in Paraíba. Future studies are needed to address the
issue of trend attribution and to attempt to establish a linkage between climatic change
and observed hydrologic trends.
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Chapter 3
An Application of Sample Entropy to
Precipitation in Paraíba State, Brazil

3.1 Introduction

Silva et al. (2003) addressed the issue of spatial and temporal rainfall variability since
the uncertainty and error over time constitute a significant problem in climatic studies. In
tropical regions, specifically in the Brazilian Northeast, this variability increases as there
are activities of various meteorological systems, such as ITCZ, the frontal systems, the
east breezes and cyclonic vortices.

As a result of the occurrence of different types of water demand during different
months and different places, it is necessary to study the variability of precipitation based
on a concept (idea) of a general study. To this end, an entropy-based approach is deemed
to be an appropriate approach to evaluate the disorder of the space-time variability of
precipitation (MISHRA et al., 2009).

There are many nonlinear dynamical methods utilized for measuring and understand-
ing complex climatic systems and their associated variables. Notwithstanding, the proce-
dures often need very long data sets that can be difficult or impossible to obtain (RICH-
MAN; MOORMAN, 2000). The authors drew a parallel between approximate entropy and
sample entropy. The first has the capability to discern changing complexity from a rela-
tively small amount of data that holds in a variety of contexts and is characterized to be a
powerful tool for analyzing short and noisy time series. However, it is heavily dependent
on the record length and consistently lower than expected for short records.
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Quantifying the amount of regularity for a time series is an important task for un-
derstanding the system’s behavior. One of the most prominent regularity measurements
for a time series is the sample entropy (SampEn)[Richman & Moorman (2000)]; which
when compared with the approximate entropy, is an unbiased estimator of the conditional
probability that two similar sequences of m consecutive data points (m is the embedding
dimension) will stand similar when one more consecutive point is included (COSTA et al.,
2003).

The SampEn characterizes the complexity narrowly on a time scale defined by the
sampling procedure which is used to acquire the time series under evaluation. In this
chapter, we used SampEn to evaluate the complexity or irregularity of monthly rainfall
series over 69 precipitation stations in Paraíba during 1962 to 2012 (see Figure 2 and
Table 1 for more details).

3.2 Methodology

The SampEn computational algorithm was first published by Richman & Moorman
(2000) and has been since applied by (LAKE et al., 2002; SCHUANGCHENG et al., 2006).
SampEn is defined as the natural logarithm of conditional probability of two similar
sequences to m points, according to tolerance level r they remain similar to m+ 1 points
(RICHMAN; MOORMAN, 2000). In the following, we provide a brief description of the
calculation, as applied to the measurement of complexity for a monthly precipitation
series.

Given a sequence UN , consisting of N monthly precipitation observation data,
u(1), u(2), . . . , u(N),

(i) create m-vectors x(1), x(2), . . . , x(N −m+ 1) in an embedding space Rm using the
method of delay and x(i) is defined as follows:

x(i) = {u(i), u(i+ 1), . . . , u(i+m− 1)}(1 ≤ i ≤ N −m+ 1) (3.1)

wherein m represents the embedding dimension.

(ii) Designate the Euclidean distance between x(i) and x(j), i.e.,

d[x(i), x(j)] = maxk=1,2,...,m(|u(i+ k − 1)− u(j + k − 1)|) (3.2)
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(iii) Designate the criterion of similarity r, r ∈ R∗+. For given xm(i), count the number
of j (j = 1 ∼ N −m, j 6= i) so that d[x(i), x(j)] < r is denoted as Bm

i (r). It follows
that, for i = 1 ∼ N −m,

Bm(r) =
∑N−m
i=1 Bm

i (r)
(N −m) (3.3)

(iv) Correspondingly, given xm+1(i), count the number of j (j = 1 ∼ N −m, j 6= i) such
that d[x(i), x(j)] < r is denoted as Ami (r). It follows that for i = 1 ∼ N −m,

Am(r) =
∑N−m
i=1 Ami (r)
(N −m) (3.4)

(v) The SampEn is defined as

SampEn(m, r) = lim
N→∞

{
− ln

[
Am(r)
Bm(r)

]}
(3.5)

Indeed, N , the number of data points, is finite and the result obtained by (i)-(v) is an
estimate of approximate entropy (ApEn) when the data length is N , that can be written
as

SampEn(m, r,N) = −ln
[
Am(r)
Bm(r)

]
(3.6)

SampEn(m, r,N) is the negative natural log of the conditional probability that two se-
quences similar within a tolerance r for m points remain similar at the next point, where
N is the total number of points and self matches are not included (LAKE et al., 2002).
The threshold factor or filter r is an important parameter. In principle, with an infinite
amount of data, it should approach zero. With a finite amount of data, or with measure-
ment noise, the r value tipically varies between 10% and 20% of the time series standard
deviation (PINCUS, 1991).

Both methods (ApEn and SampEn) are used to quantify the complexity of nonlin-
ear time series. These methods were widely used in physiological processes (TANG et al.,
2004) and climate series (SCHUANGCHENG et al., 2006). According to Richman & Moor-
man (2000), large SampEn values signify a more complex (less often) time series. The
algorithm used to compute SampEn can be visualized in Appendix A.
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3.2.1 Results and Discussion

In the previous section SampEn(m, r,N) was described as an algorithm to sample
entropy, wherein N is the length of time series. The two input parameters, m and r,
are the keys of SampEn. Schuangcheng et al. (2006) studied daily temperature series
and showed spatial patterns with variations of the input parameter r, and noticed that
a gradual decrease in SampEn occurred with an increase of filter r. On the other hand,
Dong & Meng (2013) calculated the filter r = kSD, k = 0.10 ∼ 0.25 step by 0.01. Here,
m = 2, r = kSD, and the k values were 0.05, 0.10, 0.15, 0.20.

Figure 6 shows the values of filter r for all precipitation stations. The SampEn values
of all stations range from 0.7274 to 4.5326 (N = 612,m = 2, r = 0.05). When the value of
filter is shifted to 0.10, 0.15 and 0.20, the SampEn values of stations range from 0.9319
to 2.8039, from 0.7784 to 2.2616, from 0.7139 to 1.9131, respectively. The higher values of
SampEn are concentrated at the first 20 precipitation stations which are located in Mata
and Borborema regions (see Figure 2 for more detail). These higher values are related to
orography, sea breezes and differences in vegetation.

Figure 6: SampEn values for filter r = 0.05, 0.10, 0.15, 0.20 for all 69 precipitation stations
in Paraíba, Brazil.

What causes the spatial pattern of monthly precipitation series in the study area?
According to Schuangcheng et al. (2006), the theory of nonlinear dynamics, a time series
must be nonstationary if it is formed from the interaction of several nonlinear processes.
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In a complex system, the areas interacted by two or more subsystems always show high
nonlinearity.

SampEn of a system reflects the degree of its isolation from the surroundings. Greater
signal regularity may indicate increased system isolation (PINCUS, 1994). If the hypothe-
sis were true, SampEn could be a measure of the pairing between subsystems or system
and external environment or factors which influence precipitation (air masses, conver-
gence zones). The spatial patterns of SampEn indicate that the complexity of monthly
precipitation series is high enough in areas influenced by two or more precipitation regime
types than those controlled by only one precipitation regime type. In order to gain a
better understanding of the effects of precipitation around Paraíba State, we analyzed
SampEn for each specific region and its precipitation associated stations.

Figure 7 shows the SampEn values of each specific macro-region of Paraíba. On the
top left is presented Mata region, this region has six precipitation stations, and the filter
r = 0.05 has the highest SampEn values of the region with a maximum of 3.3911 for
station 8 (Sapé). For filter r = 0.10, the SampEn values increase from 2.0374 to 2.3599
(Sapé). For filters r = 0.15 and r = 0.20 the values vary from 1.7352 to 2.0378 and 1.4642
to 1.7896, respectively. When SampEn values are particularly close (r=0.15 and r=0.20),
they reflect that Mata region has a system of abundant precipitation, especially in the
months from March to July, when winter is regular which influences the regularity of the
SampEn values.

In Agreste region, we notice a higher range of the SampEn values compared with
Mata region. When filter r = 0.05 the SampEn values are from 0.9561 from 4.5326
(Serraria), mean 2.5792 and standard deviation 0.9748. In general, even a noticeable
increasing filter r = 0.05 is not able to explain the influence of SampEn in precipitation
in the region. The filter r = 0.10 presents the SampEn values with a maximum of
2.8039 (Areias), minimum of 1.2512, mean of 2.1315, and standard deviation of 0.4417.
The majority of stations have the SampEn values lower than the minimum values of
subsequent filters r. The filters r = 0.15 and r = 0.20 have the following SampEn

values, maximum 2.2616/1.9131, minimum 1.4106/1.1796, mean 1.9077/1.6458, standard
deviation 0.2805/0.22670. The rivers in this area are almost always temporary, because
they reduce their flow or dry up in times of drought. A striking factor that determines
this condition is the rains that start to decline making it dry, this fact is associated with
SampEn values because the higher the level, the stronger the complexity.

On the bottom left is Borborema region which has the same climatic conditions as
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Mata region, i.e., the climate is hot dump with autumn/winter rains, but as one progresses
inward the region the amount of precipitation falls whose average is around 800-1000 mm.
Sousa et al. (2012) conducted a study using 77 precipitation station daily data for a period
of 10 years. The marginal entropy values were analyzed. According to them, the rainy
season has high entropy values in the middle of Borborema region. Indeed, when filter
r = 0.05 the SampEn values had a maximum of 1.9537 (Boqueirão/Boqueirão Aç.),
minimum of 0.8425, mean of 1.3078 and standard deviation of 0.3381.

When filter r takes on subsequent values (0.10, 0.15 and 0.20), the SampEn values
have a maximum of 1.9052/1.7520/1.6654, minimum of 1.1174/0.9176/0.8327, mean of
1.4208/1.2657/1.1273 and standard deviation of 0.2144/0.2384/0.2102. These values im-
ply that SampEn shows rainfall complexity of region which is associated with prolonged
dry periods. The Sertão region is the highest territory of Paraíba macro-regions. For
filter r = 0.15 and r = 0.20 all the SampEn values were closer, with a maximum of
1.5869/1.3957, minimum of 0.7784/0.7139, mean of 1.0188/0.9279, standard deviation of
0.1825/0.1471. When filter r = 0.10 the SampEn values had a maximum of 1.8817, min-
imum of 0.9319, mean of 1.2774 and standard deviation of 0.2320. Filter r = 0.05 showed
high SampEn values but all of them were low in comparison to other macro-regions.
According to Sousa et al. (2012), the highest values of marginal entropy were found in
the entire Sertão region. In fact, the complexity associated with rainy/dry periods is the
main factor explained by the SampEn values.
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(a) (b)

(c) (d)

Figure 7: Comparison of SampEn among 4-regions in Paraíba.
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(a) SampEn r = 0.05 (b) SampEn r = 0.10

(c) SampEn r = 0.15 (d) SampEn r = 0.20

Figure 8: Spatial view of SampEn for 69 precipitation stations in Paraíba.

From Figure 8 we can notice that when filter r=0.05, the SampEn values show a
higher complexity in Mata region and almost all Agreste region. The lowest SampEn
values are concentrated in Sertão region. In fact, (a) does not describe the real prediction
of precipitation in Paraíba. (b) Filter r = 0.10 indicates higher complexity in Mata region
and at least in more than 70% of Borborema region which leads to a lower prediction of
precipitation. (c) and (d) both exhibit a similar behaviour in regions with higher SampEn
values, this fact confirms the lower predictability of precipitation. The lower values of
SampEn have more emphasis when r = 0.20, which is associated with regions that suffer
with great dry periods.

3.2.2 Temporal trends of SampEn

In order to detect the SampEn differences of temporal patterns in different climate
(region) divisions, we use sliding windows. This sliding windows approach computes the
relevant test statistic that is capable of detecting serial dependence for the first window
of a specified length, and then rolls the sample one point eliminating the first observation
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and including the next one for reestimation of the test statistic. This process continues
until the last observation is used (LIM et al., 2006). In this study, in a fixed-length slid-
ing windows of 150 monthly length observations, the first window starts from month 1
(January 1962) and ends in month 150 (June 1974); the second window constitutes obser-
vations running from month 2 (February 1962) through month 151 (July 1974), and so on.
Proportionate stratification was the method utilized to choose precipitation stations, 22
of 69 precipitation stations were randomly selected. All SampEn rolling windows figures
are available in Appendix B.

Figure 9 shows SampEn for sliding windows of 150 months (Mata region) with a step
of one month between two windows. In (a) the SampEn values started decreasing until
1966 but the complexity increased between 1967 and 1972 which provided less stability and
less predictability. In (b) the higher complexity is concentrated between 1962 and 1978,
1982 and 1998 and from 2000, these periods showed lower precipitation predictability. In
(c) the higher complexity is concentrated until 1980 which is associated with less stability
and predictability. On the other hand, from 1988 more predictability and stability are
shown.

The large oscillation of the amount of rain in Paraíba is due to the impact of meteoro-
logical and climate phenomena active in the region. The Mata region is the one that has
the highest concentration of precipitation in Paraíba which influences the higher values
of SampEn. According to Beserra et al. (2011), El Niño and La Niña influence enough
in the rainy season and this variability may be influenced by the surface temperature
gradient of the southern sea or inter-hemispheric (GRADM).

As stated in Sousa et al. (2012), the east coast of Paraíba, more specifically regions
surrounding the Agreste and the Mata region’s, also has the highest precipitation values,
exceeding 450 mm. That is, at those locations where entropy is high, precipitation reached
its highest values. Therefore, the uncertainty of precipitation is lower in the less rainy
periods and locations.

Figure 10 shows SampEn sliding windows values for 5 precipitation stations in Agreste
region. (a), (b) and (d) presented a similar behavior, that is, first they showed an increase
until 1986 in (a), until 1994 in (b) and until 1985 in (d). These factors were influenced by
El Niño, La Niña, which influenced the high complexity and affected the predictability.
However, (c) and (e) showed increase and decrease through the period.
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(a) (b)

(c)

Figure 9: SampEn sliding windows for Mata region of Paraíba State during 1962-2012.
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(a) (b)

(c) (d)

(e)

Figure 10: SampEn sliding windows for Agreste region of Paraíba State during 1962-2012.
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According to Nóbrega et al. (2014), it can be seen that when these areas of the
Atlantic sea surfaces are warmer than the climatological average, there is a reduction
of such extreme levels of precipitation in Borborema region. It indicates that when the
waters in the northern part of the Atlantic (TNAI) are colder, the ITCZ is shifted to the
south of its dominant position, thereby influencing the precipitation regime positively in
the northeast of Brazil. However, the rates of extreme precipitation events in Borborema
and Agreste are more correlated with the SST (Sea Surface Temperature) in the Atlantic.

Figure 11 shows SampEn sliding windows for Borborema region. (a) shows an extreme
decrease of SampEn values from 1976 to 1990. (b) and also, (d) present a decrease of
SampEn values from 1978 to 2000 for (b), and from 1970 to 2002 for (d). (c) presents a
continuous increase of SampEn values, except for the periods after 1997. (e) presents an
increasing period, until 1984, which has the highest SampEn value of the region. There is
another increasing period from 1986 until 2000 where there is a small decay but another
increasing period starts after 2002. (f) presents a peculiar characteristic because it starts
with a huge decrease of SampEn value and reaches the lowest value of the region but
after 1982 an increase of Sampen values help to understand better the rainfall behavior
of this station.

Sertão region features moderately low water availability. As stated by Sousa et al.
(2012), the entropy of the annual period remained higher in municipalities with regard
to the coast in comparison with Sertão locations. On the other hand, the Sertão region,
which showed relatively low rainfall, exhibited the lowest entropy values, which provided
high stability and high predictability of rainfall.

Figure 12 exposes four precipitation stations for Sertão region. (a), (b), (c) and (d)
present decreasing SampEn sliding windows values, not so similar as seen before. In (a)
the decrease is until 1990 when it reaches the lowest value of the region. (b) and (c)
presented an alternation between increasing and decreasing periods. However, even (d)
which presented the highest SampEn value (1.8213) concentrated for the most part of
the period of decreasing SampEn sliding windows values, especially from 1970 until 2000.
Figure 13, as well as the anterior, shows another four precipitation stations for Sertão
region. (a) shows increasing SampEn sliding windows values, especially between 1962
and 1998. On the other hand, (b), (c) and (d) are characterized by decreasing values
associated with low complexity and high prediction.
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(a) (b)

(c) (d)

(e) (f)

Figure 11: SampEn sliding windows for Borborema region of Paraíba State during 1962-
2012.
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(a) (b)

(c) (d)

Figure 12: SampEn sliding windows for Sertão region of Paraíba State during 1962-2012.
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(a) (b)

(c) (d)

Figure 13: SampEn sliding windows for Sertão region of Paraíba State during 1962-2012.
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3.3 Conclusions

Analysis of the complexity characteristics of precipitation is crucial to improve the
efficiency of regional precipitation use and water resources planning. SampEn can model
with less data the nonlinearity of time series. This method is introduced for measuring
the complexity of monthly precipitation series of different regions of Paraíba. By cal-
culating SampEn of random data using the same parameters (N = 42229,m = 2, r =
0.05, 0.10, 0.15, 0.20), the maximal SampEn values tend to approach 4.53 and minimal
SampEn values tend to approach 0.71 for a regular series. Results of SampEn values of
all stations indicate that precipitation series present significant complexity or irregularity.

Geostatistical analysis and spatial patterns of SampEn values of monthly precipita-
tion series show significant regional differences in the study area. For filter r = 0.15 and
r = 0.20 the high SampEn values occur in Mata region, almost all of the Borborema
region. Over the micro regions of Alto-Sertão and Cariri occurrence of extreme rain and
dry events are likely, hence the high variability of precipitation accumulated deviations
influence the low values of SampEn, high prediction, and low complexity.

One cannot ignore the future trends of climate systems because of past and current
climate change. Not only Paraíba, but the entire northeast region of Brazil has gone
through the worst drought in 40 years. Our studies also recommend that SampEn is a
potential tool for climate prediction and the length of the data may influence the SampEn
values. In a nonstationary system, there is an inverse relationship between the values of
SampEn and filter r, i.e., SampEn regularly decreases with a sensible increase of filter
r.

In conclusion, this work testifies that entropy measurements have the potential to be
an important alternative nonlinear way for analyzing precipitation series or even climate
series.
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Chapter 4
General Conclusions

The Paraíba state is dominated by scarcity of rainfall and water resources in the most
parts of its territory; emphasis for hinterland and Sertão regions. Trends Analysis and
Sample Entropy were evaluated and compared with focus on spatiotemporal variations of
precipitation regimes based on monthly precipitation data covering the period of 1962-
2012. In this work, the following conclusions are drawn:

1) Although the trends values presented statistically significant results practically over
all four regions of Paraíba through Mann-Kendall’s test evaluation; maybe it is
necessary an application of Mann U Whitney test to evaluate an existence of homo-
geneity of the data over a particular micro-region;

2) It was noticed that transition of precipitation changes is evident in both space and
time scale. Thus, it is crucial an investigation if theses changes are connected to
disorders and predictability. To this purpose, the coupling of entropy with monthly
rainfall data enables a relative assessment of the potential availability of water re-
sources at specific local considering both the aggregate and the temporal variability
of rainfall.

3) Sample Entropy was applied to investigate the disorder/predictability and behavior
of monthly rainfall in Paraiba, but a different approach is necessary for a better
knowledge about the disorder/predictability; for instance, Cross-Entropy.

4) It is ongoing an investigation using Disorder Indices (DI) such as marginal entropy
(ME) and apportionment entropy (AE), which exhibit variations at different time
scales, and also multivariate disorder index (MDI) to represent disorder properties
of precipitation process.
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5) Results of this work are of significance for planning and management of water re-
sources and agricultural irrigation in regions characterized by long drought periods.
Besides, this work can help to enhance human a better understanding of regional
responses of hydrological cycle and its variations.
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Appendix A
Algorithm 1: SampEn Algorithm.

Input: Parameters m, r, N
Output: SampEn value of the time series

// Carry out N −m + 1 vectors of length m

1 for i← 1 to N −m+ 1 do
2 x(i)← {x(i), x(i+ 1), · · · , x(i+m− 1)};
3 end
// Define the distance dm between x(i) and x(j) vectors ∀i 6= j

4 for k← 0 to m− 1 do
5 dm

[
x(i), x(j)

]
← max

{
|x(i+ k)− x(j + k)|

}
;

6 end
7 for i← 1 to N −m do

8 Bm
i (r)← Bi

(N −m− 1) ;

9 Ami (r)← Ai
(N −m) ;

10 end
/* Where Bi is the number of vectors x(j) similars to the

vectors x(i), ∀i 6= j, such that dm
[
x(i), x(j)

]
< r */

/* Furthermore, Ai is the number of vectors x(j) of size (m + 1)

similars to the vectors x(i), ∀i 6= j, within the r distance

*/

// Compute Bm(r) and Am(r)

11 Bm(r)← 1
N −m

(
N−m∑
i=1

Bm
i (r)

)
;

12 Am(r)← 1
N −m

(
N−m∑
i=1

Ami (r)
)
;

/* Finally, compute the SampEn statistics */

13 SampEn(m, r,N)← −Ln
(
Am(r)
Bm(r)

)
;

14 return SampEn(m, r,N);
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Appendix B

Figure 14: SampEn sliding windows from station 1 to 8.
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Figure 15: SampEn sliding windows from station 9 to 20.
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Figure 16: SampEn sliding windows from station 21 to 30.
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Figure 17: SampEn sliding windows from station 31 to 40.
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Figure 18: SampEn sliding windows from station 41 to 50.
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Figure 19: SampEn sliding windows from station 51 to 60.
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Figure 20: SampEn sliding windows from station 61 to 69.
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