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Abstract

In recent decades multifractal analysis has been successfully applied to characterize the
complex temporal and spatial organization of diverse natural phenomena such as heart-
beat dynamics, the dendritic shape of neurons, retinal vessels, rock fractures, etc. However,
common methods of multifractal analysis do not seem appropriate for analyzing quasi-one-
dimensional structures, with complexity far from filling two dimensional space, but more
complex than a line, such as the contours of objects. For this reason, the characterization
of multifractal properties of closed contours has up to date remained rather elusive. Here a
new, robust, technique, “The Traveling Observer” Multifractal Detrended Fluctuation Analy-
sis is presented, which bridges the gap between the methods used for geometrical fractals
and those used for temporal series, reducing the limitations present in existing multifractal
techniques to analyze contours. The procedure first maps the contour onto a “time series”
of distances from the central path (defined by harmonic term zero), as observed by a vir-
tual observer traveling along this path at constant angular speed. The fluctuations from the
central path of the contour perimeter are registered as a “time series”, and the MF-DFA is
then implemented to quantify the “temporal” correlations of this series. The relevance of
studying the fractal properties of the contour fluctuations is demonstrated through several
applications to natural and simulated data, highlighting the advantages of this new appro-
ach. The results indicate that the new procedure can capture intrinsic characteristics of
the growth process hidden in the contour fluctuations, that are reflected by the multifractal
parameters. In fact, these parameters can be used as shape descriptors in classification
problems, as is practice with other traditional quantitative methods employed for shape
analysis. On the other hand, their interpretation goes beyond simple shape classification,
uncovering meaningful and sometimes unexpected features about natural structures and
their growth. For instance, relationships between multifractal features of otolith contour fluc-
tuations and fish size and age at maturity has been observed, and properties of agregates
generated through a computational model at different growth conditions are shown to have

close correspondence with thermodynamic behavior of magnetic model systems.

Keywords: Multifractal Analysis; Contour Fluctuations; Biomineralization Process;

Otoliths; Diffusion-Limited Aggregation; Microscopic Aggregation Model.



Resumo

Nas ultimas décadas, analise multifractal tem sido aplicado com sucesso para caracteri-
zar a complexa organizacao temporal e espacial de diversos fendmenos naturais, como a
dindmica de batimentos cardiacos, a forma dendritica de neurdnios, vasos da retina, fra-
turas de rochas, etc. No entanto, os métodos comuns de andlise multifractal aparentam
nao ser apropriados para a andlise de estruturas quasi-unidimensionais, com complexi-
dades muito longe de preencher um espaco bi-dimensional, porém mais complexas do
que uma linha, tal como o contorno de objectos. Por esta razdo, a caracterizacado das
propriedades multifractais de contornos fechados até o presente momento tem permane-
cido insuficiente. Na presente tese, uma nova técnica, robusta, “The Traveling Observer”
Multifractal Detrended Fluctuation Analysis, € apresentada. Esta nova metodologia repre-
senta a ponte entre os métodos utilizados para fractais geométricos e os utilizados para
séries temporais, reduzindo as limitacées das técnicas atualmente utilizadas para analise
multifractal de contornos. Primeiramente, o contorno € mapeado numa série temporal de
distancias ao caminho central, definido pela harmdnica de termo zero, tal como um obser-
vador virtual viajando ao logo deste caminho a uma velocidade constante. As flutuagdes
ao longo do perimetro deste caminho central sdo registradas como uma série temporal ou
angular, e o “The Traveling Observer” MF-DFA é entdo implementado para quantificar as
correlagdes temporais desta série. A relevancia de se estudar as propriedades fractais das
flutuagdes de contorno é demonstrada através de varias aplicagdes para dados naturais e
simulados, destacando as vantagens dessa nova abordagem. Os resultados indicam que
0 novo processo pode capturar as caracteristicas intrinsecas do processo de crescimento,
oculto nas flutuagdes de contorno, e que séo refletidas nos parametros multifractais. De
fato, estes parametros podem ser utilizados como descritores de forma em problemas de
classificagdo. Por outro lado, suas interpretagdes vao além da simples classificagdo de
forma, expondo caracteristicas significativas e por vezes inesperadas sobre as estruturas

naturais e seu crescimento.

Palavras-chaves: Andlise Multifractal; Flutuacées do Contorno; Processo de
Biomineralizacao; Otdlitos; Agregacao por Difusdo Limitada; Modelo de Agregacao
Estocastico Microscopico.



Samenvatting

In de afgelopen decennia is multifractale analyse met succes toegepast op de complexe
temporele en ruimtelijke organisatie van diverse natuurlijke fenomenen zoals hartslagdyna-
miek, de dendritische vorm van neuronen, retinale vaten, rotsbreuken, etc. Echter, gang-
bare methoden voor multifractal analysis lijken niet gepast voor het analysen van quasi-
ééndimensionale structuren die veel minder complex zij dan 2D-vullende structuren, maar
toch complexer dan een lijn; bijvoorbeeld de contouren van objecten. Daarom bleef de
karakterisering van multifractale eigenschappen van gesloten contouren tot heden tamelijk
ongrijpbaar. Hier wordt een nieuwe, robuuste, techniek, “The Traveling Observer” Multi-
fractal Detrended Fluctuation Analysis gepresenteerd, welke de kloof tussen de methoden
die worden gebruikt voor geometrische fractals en deze die gebruikt worden voor tijdelijke
serie overbrugt. Dit vermindert de beperkingen op de bestaande multifractale technieken
contouren an te analyseren. De procedure beeldt eerst de contour of op een “tijdreeks” van
afstanden van het centrale pad (gedefinieerd door harmonische term nul), zoals waargeno-
men door een virtuele waarnemer die langs deze weg bij constante hoeksnelheid beweegt.
De schommelingen van het centrale pad van de contour omtrek zijn geregistreerd als een “
tijdreeks,” en de MF-DFA wordt vervolgens geimplementeerd om de “ tijdelijke” correlaties
van deze serie te kwantificeren. De relevantie van het bestuderen van de fractale eigens-
chappen van de contourfluctuaties wordt gedemonstreerd door verschillende toepassingen
van natuurlijke en gesimuleerde data, met aandacht voor de voordelen van deze nieuwe
aanpak. De resultaten geven aan dat de nieuwe procedure intrinsieke kenmerken van het
groeiproces, verborgen in de contourfluctuaties, kan beschrijven die gereflecteerd worden
door de multifractale parameters. In feite kunnen deze parameters worden gebruikt als
vormbeschrijvingen in classificatieproblemen, in analogie met andere traditionele kwanti-
tatieve methoden voor vormanalyse. Aan de andere kant goat hun interpretatie verder
dan eenvoudige vormclassificatie, met als genolg het blootleggen van zinvolle en soms on-
verwachte eigenchappen van natuurlijke structuren en hun groei. Zo heeft men bijnabeeld
net verband tussen multifractale kenmerken van otoliet-contourschommelingen en grootte
van een vis en de leeftijd van maturiteit geobserveerd, en de eigenschappen van aggrega-
ten gegenereerd door middel van een rekenmodel op verschillende groeiomstandigheden

wijken nauwe correspondentie met thermodynamische gedrag van magnetische modelsys-



temen te vertonen.

Trefwoord: Multifractale Analyse; Contour Fluctuaties, Biomineralisatie proces; Otoliths,

Diffusie-Limited Aggregation; Microscopische Aggregation Model.
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1 Introduction

The understanding of the behavior of simple natural systems such as molecular struc-
tures, complex phenomena such as earthquakes, and the underlying stochastic processes,
has been the object of study of numerous researchers from different fields of science, inclu-
ding Oceanography, Biology, Geology, and, mainly, Physics, over the last century. Scaling
and fractal geometry represent concepts of statistical physics introduced roughly four de-
cades ago, which brought about a breakthrough in improving the understanding of diverse
phenomena. These two concepts, based on power laws, permitted the study of macrosco-
pic patterns through the knowledge of microscopic components, and making connections

between phenomena of different length scales (MEAKIN, 1998).

Benoit Mandelbrot coined the name of fractal geometry in 1975 (MANDELBROT, 1975) to
describe geometrical patterns in nature, extrapolating the classical Euclidean approach, and
since that time this geometry has assisted to describe a long list of natural structures, from
microscopic aggregates to the clusters of galaxies. Before Mandelbrot, others researchers
started to study fractal objects, such as Karl Weierstrass, who in 1872 considered functions
that were everywhere continuous but nowhere differentiable, and Helge von Koch, who in
1904 discussed geometric shapes such as the Koch Snowflake. However, the visualization
of the complex fractal objects, characterized by intricate-looking set of curves, was only

possible with the advent of computers (PICKOVER, 2009).

The most notable concept related with a fractal is self-similarity of an object in terms
of its geometrical appearance, i.e. parts of a fractal object look similar to the whole. For

instance, deterministic fractals, as the Koch snowflake shown in Figure 1, can be conceptu-



ally described through this concept. However, fractals are indeed not limited to geometrical
patterns. In the definition proposed by Mandelbrot in 1986: “A fractal is a shape made of
parts similar to the whole in some way”, one can interpret the word “shape” as any mea-
sure (concentration, eletric potential, probability, etc.) of a structure or a process, measured
statically or dynamically, and the self-similarity can be found in various degrees (VICSEK,

1989).

VLI

Figure 1: lllustration of three iterations of the Koch snowflake. The construction follows
a recursive procedure, starting with an equilateral triangle: divide each line segment into
three segments of equal length; draw equilateral triangles that have the central segments
from the previous step as their bases; remove the line segments that represent the bases
of the triangle drawn in the previous step.

For instance, only deterministic or mathematical fractals demonstrate exact self-similarity.
In the case of random fractals, which are the most common in nature, self-similarity is in-
terpreted in statistical sense (VICSEK, 1989; MEAKIN, 1998), i.e. the statistical measures of
a phenomenon are invariant to the change of the length scale on which measurement is
performed. For both deterministic and stochastic self-similarity, fractal geometry transforms
complex irregularities that look similar under different resolutions, as shown in Figure 2,
that could represent an additional source of complexity for some classical approaches, into

a source of simplicity (SEURONT, 2010).

The principal feature of a fractal is that the relationship between the measure of a certain
feature N of this phenomenon on scale of measurement (or length, or time) ¢ follows a
power law

N (€) ~ P, (1.1)

log(N)
log(€)

The scale exponent D is the fractal dimension calculated as D = lim._ [ } in prac-
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Figure 2: Contour fluctuations of a fish otolith at different angles. It is seen that just by
looking at the two structures, one cannot determine which is local, and which is global.

tice obtained as the slope of the regression line of the scatterplot of log(N) versus log(¢)
(FEDER, 1988). Hence, one of reasons for the success of fractal theory in many scientific
fields starts from its capability to explain complex systems using a relatively low number of

parameters, the fractal dimensions.

Among the diverse fields of fractal applications, far-from-equilibrium growth phenomena
have great importance, being commonly observed in many fields of science and techno-
logy, such as viscous fingering (fluid-fluid interaction; Fig. 3A), crystal growth (Fig. 4) and
electrodeposition of ions onto an electrode (Fig. 5A). The far-from-equilibrium growth is
characterized by presence of a continuous and sufficiently strong force that pushes it far
from its natural state of rest; by the evaluation of the properties of this process, such as
phase transitions and critical exponents; and by the possibility to find new phenomena that
arise from the imposed conditions. Furthermore, due to instability of the system, it is easier
to control a larger variety of patterns and assembling structures than in near-equilibrium
state (COMMITTEE ON CMMP 2010, SOLID STATE SCIENCES COMMITTEE, NATIONAL RESEARCH

COUNCIL, 2007).

Microscopic fractal growth models such as Diffusion Limited Aggregation - DLA, Eden
model or Ballistic Aggregation, are often used to describe this kind of phenomena. For
instance, objects on Figures 3A and 5A are similar to a DLA cluster shown in Figure 5B.

These growing fractals are scale-invariant objects, and the theories and methods developed
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Figure 3: (A) lllustration of viscous flow (fluid-fluid interaction), similar to the results (B)
obtained by Meakin et al. (1987) on the simulations of a off-lattice diffusion aggregation
model.

to study far-from-equilibrium growth phenomena also contemplate scale invariance, there-
fore, these two theories brougth about a significant advance in the investigation of growth

processes, including scaling behavior (VICSEK, 1989).

Figure 4: The crystalline polymorphs of calcium carbonate: (a) calcite, (b) aragonite, (c)
vaterite (MUKKAMALA; ANSON; POWELL, 2006)

Figure 5: (A) Copper aggregate formed from a copper sulfate solution in an electrode po-
sition cell (JOHNSON, 2006); (B) off-lattice DLA cluster with 5 x 10° particles aggregated
(BARABASI; STANLEY, 1995)



Many phenomena in nature are investigated using fractal analysis present interwoven
components with different fractal properties. Due to this complexity of behavior, another
concept in fractal analysis appears to better describe these types of phenomena: mul-
tifractality. The unique scale exponent, obtained in the monofractal theory, is adequate
for describing a uniform set (uniform distribution of a measure). For more complex sets
that exhibit a hierarchy of scaling exponents at different scales, application of monofractal
analysis yields an “average” (or effective) fractal dimension and a generalized multifractal

approach provides a more adequate description.

More precisely, consider mass probability p;(¢) for each region of size (scale) ¢ and the

partition function Z,(¢) defined by

Zy(e) = Zpi(e)q. (1.2)

Using this partition function one can describe the structure at different scales, that is, if one
considers the gth generalized moment for large positive g, then Z,(¢) will be dominated by
those parts of the structure with largest values of p;(¢), while for q negatively large Z,(¢)
is dominated by parts of the structure with smallest (non-zero) values of p;(¢) (CHHABRA;
JENSEN, 1989; MEAKIN, 1998). Thus, parameter ¢q serves as a “magnification glass”, and
it can assume values between —oo and 400, but in practical applications it is truncated
at some large positive and negative values. In this way, multifractal analysis captures the
inner variation in a system by resolving local densities and expressing them by a hierarchy

of exponents, rather than a single fractal dimension (FEDER, 1988; MEAKIN, 1998).

In recent decades multifractal analysis has been successfully applied to characterize
the complex temporal and spatial organization of such diverse natural phenomena as heart-
beat dynamics (IVANOV et al., 1999), the dendritic shape of neurons (FERNANDEZ et al., 1999),
retinal vessels (STOSIC; STOSIC, 2006), rock fractures (XIE; WANG; KWASNIEWSKI, 1999), and
intricately shaped volcanic ash particles (DELLINO; LIOTINO, 2002). In what follows, some of
the most common techniques applied to determine the multifractal properties of geometric

objects and temporal series are briefly described.



Geometrical multifractals represent a special case when the measure of interest is ho-
mogeneously distributed over the observed structure. Growing structures, as the Diffusion
Limited Aggregation (DLA), widely used to model far-from equilibrium phenomena, are good
examples of this kind of multifractals and their fractal properties are frequently measured by

the amount of mass M, within a box of linear size L (TéL; VICSEK, 1987).

Considering the mass distribution observed for different grids of size ¢, such that a <<
¢ << L (where a is the lattice constant and L is the linear dimension of the system), the
generalized dimension D, can be defined as (TéL; FULOP; VICSEK, 1989)

M, q / (g—1)Dq
> (50) ~ (1) "3

i

where M, is the total mass, and M; is the mass (number of pixels) within the ith box.
The generalized dimensions D, D, and D, correspond to the capacity (or box-counting)
dimension, information (or Shannon) dimension, and correlation dimension, respectively.
Finally, D_., and D, represent the limits of the generalized dimension spectrum, where
the measure of interest is “most dilute” and “most dense”, respectively. For monofractals,
all the generalized dimensions coincide, being equal to the unique fractal dimension, i.e.

the fractal dimension is independent of q.

As mentioned before, multifractal analysis expresses the variation in a system by a hie-

rarchy of exponents, the so called f(«) spectrum, achieved through the Legendre transform

fla(q,0)] =qa(q) —7(q), (1.4)

where

a(q) = (1.5)

and 7(q) is the mass correlation exponent of the gth generalized moment, defined as 7(q) =
(¢ — 1)D(q). The singularity spectrum provides a mathematically precise and naturally
intuitive description of the multifractal measure in terms of interwoven sets (regions) with
singularity strength « (see e.g. Chhabra and Jensen, 1989, for more details). In the case of

geometrical multifractals, f(a) may be understood as the fractal dimension of these sets.



For a monofractal structure, the singularity spectrum produces a single point in the f(«)

plane, whereas multifractal objects yield a single humped function.

Perhaps the most popular method used to capture fractal and multifractal properties
of geometrical objects is the box counting method, defined by Russel et al. (1980). This
method consists in covering the object with a grid of Ny boxes of size ¢ (Fig. 6) and deter-
mining the number of non-empty boxes N,. The fractal dimension is then determined from

the Equation 1.1, where the scale ¢ is equal to ¢/ L.

To investigate the object over a range of generalized moments, the generalized dimen-

sions for each ¢ can be obtained from

_ o (N/No)T L

D,(e) = In(c) =1 (1.6)
E[ ] ,\Lx\
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Figure 6: Example of a set of boxes with size ¢ to determine the fractal dimension through
the box-counting method

Another widely used method for geometrical fractals is the sand box. In this method,
the main quantity is the mass M (R) (the number of particles) within a region of radius R
centered typically on the fractal origin. The relation of these two measures also follows
the power law described in Equation 1.1. in the form M(R) ~ RP°, from witch the fractal
dimension is obtained. However, according to Tél et al. (1989), for some geometrical
multifractals, this power law exists, but the generalized dimension D is equal to D_ instead

of Dy if the centre is the origin of the fractal. Furthermore, the singularity strength o and the



function inM (R) versus InR will be dependent of the choice of the sand box center.

To minimize this problem, the former authors introduced the generalized sand box
method, that uses the average value of the masses M (R) and their powers over randomly

distributed centres on the fractal. Based on this modification, the equivalent of Equation 1.3

()

These two techniques are adequate to describe fractals in a two dimensional plane.

for this method becomes

Other multifractal techniques are frequently used to describe multifractality of one dimensi-
onal data measured in homogeneous time intervals, developed to analyze complex systems
that frequently exhibit noisy and non-stationary time series (MUZY; BACRY; ARNEODO, 1991;
MURGUJA; URJAS, 2001; KANTELHARDT et al., 2002; KANTELHARDT, 2009), that represents a
difficult task for classical statistical tools (MéNARD et al., 2006). In fact, the non-stationary
behavior of complex systems can hide trends and heteroskedasticity that could lead to a
spurious detection of correlations. However, the multifractal techniques developed in the
last decade can avoid this problem by removing the trends and concentrate on the analysis
of the fluctuations (OSWIECIMKA; KWAPIEN; DROZDZ, 2006). They often uncover scaling laws
that characterize the studied phenomena through fractal (or multifractal) scaling exponents,
which can be used in comparison with other systems and with models, modelling the time
series, predictions regarding extreme events or future behavior and characterization of the

system phase transitions (KANTELHARDT, 2009).

Muzzy et al. (1991) have proposed a robust multifractal analysis based on the wavelet
transform (WT) that can be applied to determine the singularity spectrum of any experimen-
tal signal. In the wavelet transform modulus maxima (WTMM) method, the partition function
of Equation 1.2 is constructed using the capability to detect all the singularities of a large
class of signals through the local maxima of the WT, |7, (¢, x)|, at a given scale ¢ > 0, and
arranging them in an hierarchical order (MUzY; BACRY; ARNEODO, 1991). More precisely,

instead of boxes, this method covers the entire support with wavelets of different sizes.



The WT for a specific wavelet function g of a signal s(x) is defined as

+o0 _
T,(e, o) = %/ s(x)g <$ x0> dx (1.8)

00 €

and the partition function becomes
Zle,q) = Y |Tyle,x(e)|" ~ @ (1.9)
{zi(9)}
Then, the singularity spectrum can be determined from the Legendre transform in Equation

1.4 of the partition function scaling exponent 7(q)

Another important technique used for time series, as efficient as the WTMM method,
however requiring a lesser computational effort (KANTELHARDT etal., 2002), is the Multifractal
Detrendeded Fluctuation Analysis (MF-DFA). It is a generalization of the so called Detren-
ded Fluctuation Analysis, DFA (PENG; BULDYREV; HAVLIN, 1994), widely-used technique for
the determination of monofractal scaling properties and the detection of long-range corre-
lations in noisy, nonstationary time series. In the case when the series presents different

scale exponents, the use of MF-DFA is preferable.

Although the methods described above are well established in the scientific community,
they do not seem appropriate for analyzing quasi-one-dimensional structures, with comple-
xity far from filling two dimensional space, but more complex than a line. For instance, the
contour represents an important feature extracted from natural and artificial objects and,
in many cases, displays this characteristic. The contour of objects has been intensively
studied in a wide range of scientific fields, since all objects present a closed or an opened
contour. Furthermore, from a two dimensional point of view, the contour represents the sur-
face of a natural structure that is in direct contact with the environment, and its study can
reveal important results in this respect. Nevertheless, the characterization of multifractal

properties of closed contours has up to date remained rather evasive.

Motivated to reduce the limitations present in existing multifractal techniques to analyze
contours, and in order to demonstrate the relevance of studying the fractal properties of this

important feature, we introduce here a new, robust, technique, “The Traveling Observer”
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Multifractal Detrended Fluctuation Analysis, which bridges the gap between the methods
used for geometrical fractals and those used for temporal series. In the next chapter we
describe the details of this procedure, highlighting the problems observed in the classical

methods, and the advantages of this new approach.

The following chapters show some applications of the “Traveling Observer” MF-DFA
and demonstrate the capability of the multifractal analysis of the contour fluctuations to re-
veal meaningful and sometimes unexpected information about natural structures and their
growth processes. In chapters 3 and 4, contour fluctuations of fish otoliths are analyzed.
First, the multifractal behavior of otoliths during the fish life was investigated, and then the
existence of different patterns of multifractality among fish species, and the capability of the
multifractal parameters to classify otoliths of different species were evaluated. Finally, in
chapter 5, a microscopic aggregation growth process under different growing condition is
analyzed, considering both the morphological changes in the aggregates and the multifrac-

tality of their perimeter fluctuations.
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2 The “Traveling Observer”
Multifractal Detrended Fluctuation
Analysis

2.1 Introduction

When we use our vision capability, we often try to identify some characteristics of an
object to learn about it or to recognize it among another objects. Some of these charac-
teristics could be color, texture, size and the nature of the border or contour (Fig. 7). The
latter is often used to describe properties of boundaries in surface interaction, shapes and
roughness of objects. Artificial objects usually present regular and smooth shapes, that are
easily described by the traditional Euclidean geometry. However, natural structures usually
reveal far more complex patterns. The boundaries that form natural surfaces and contours
are often not smooth. Natural forms (landscapes, mountain, coastlines, trees, vegetation

cover) are irregular and rough in appearance.

The classical view of object structure considers roughness as a surface phenomenon
that does not penetrate into the form that constitutes the object per se. The objects of classi-
cal analysis are composed of compact differentiable manifolds, smooth curves or surfaces
that include their boundaries. In this view, natural contours consist of a superficial coating of
texture or irregularity that is attached to a compact underlying structure. Hence, rough con-
tours can be decomposed into smooth differentiable trends and rough additions (GILDEN;
SCHMUCKLER; CLAYTON, 1993). In the case of fractal theory, roughness is considered as the

main feature evaluated, since it captures the complexity of the shape in terms of the level of
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Figure 7: llustration of some characteristics that we visibly used to describe and distinguish
objects. (A) Colors and size; (B) and (C) texture; and (D) borders and contours.

protrusions and cavities at different scales, rather than shape in the sense of morphometry.
This characteristics is important because variations in the boundary of a natural structure
during growth is a response to (i) external boundary conditions (surface interaction) and (ii)
the internal mechanisms of the growth process. Therefore, the analyses of local and global

fluctuations of the contour may provide useful information on both.

However, when we assume a contour shape as a monofractal, we get only a single scale
exponent (fractal dimension), which often cannot adequately describe contour complexity.
Thus a generalized multifractal approach is needed (HARTE, 2001). Practical difficulties
have thus far prevented the full use of multifractal analysis to describe closed contours.
Such traditional techniques have been demonstrated to be rather problematic because of
the fact that boxes which contain a small (or zero) number of particles (or pixels) give an
anomalously large contribution to the partition function, and consequently they do not yield
reliable results for negative ¢ (FERNANDEZ et al., 1999). Another problem is that the results
turn out very sensitive to the choice of the box size range. Tél et al. (1989) proposed
an alternative method (the “Generalized Sand Box Method”) to solve the first problem, ne-
vertheless the second issue still remains problematic. These methods also assume the

contour is a geometrical fractal, and thus important fine fluctuations around the quasi-one-
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dimensional structure of the contour perimeter may be ignored.

To overcome these technical problems, a new technique to investigate whether fluctua-
tions of the contour can reveal more information than its bare morphological appearance is
proposed here, combining Regular Fourier Analysis (RFA) and Multifractal-Detrended Fluc-
tuation Analysis (MF-DFA). First, the contour is mapped onto a “time series” of distances
from the central path, defined by harmonic term zero (Fig. 8) as observed by a virtual ob-
server traveling along this path at constant angular speed. The fluctuations from the central
path of the contour perimeter are registered as a “time series,” and the MF-DFA is then

implemented to quantify the “temporal” (sequential angular) correlations of this series.

200 7

P
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Figure 8: Schematic representation of the superposition of the standard circular shape
(zero-th harmonic term) with a contour, used to define the periodic series of the contour
fluctuations.

2.2 The Method

2.2.1 Data series construction

The data series is constructed using the values of the radius of the contour r at the

angle ¢, normalized by the zero-th harmonic (Fig. 8), with ¢ varying between —7 and .



The normalized (dimensionless) contour radius r. at point i of the contour (i = 1,...,k) is

defined as
2 2
L) T Yiip)

re () = o (2.1)

where x and y are the coordinates of the ith contour pixel at the angle ¢, and ay is the coef-
ficient of zero-th degree term, defined as the mean of the £ radii observed in the structure,
ag = k1 Zf;ol r; (LESTREL, 1997). The zero-th degree term represents the contribution of
a circle centered on the center of mass of the structure. Therefore r. is less than one if the
contour point lies inside the circle, and it is greater than unity if the point lies outside the

circle.

There are two advantages of using the RFA: (1) the multifractal analysis becomes in-
variant to size, since the zero-th degree term is proportional to the size of the image; (2)
complex morphological contour may present multiple values for a single angle due to pro-
trusions and cavities. The last feature is in fact commonly considered a limitation for the
use of RFA, but it is precisely the opposite in the current approach, because this effect
induces noise into the data series, and the multifractal characteristics become more pro-
nounced. That is, at the same angle, the structure could present sites with high, moderate
and low probability of aggregation (Fig. 9), that characterize the complexity of the structure

analyzed.

The current mapping of the data may be considered as a time series of the values of the
distance from the actual contour to the basic regular shape (defined by the zero-th harmo-
nic), as seen by an observer traveling along the regular shape at constant angular speed.
Using this time series the multifractal analysis based on the MF-DFA method proposed by
Kantelhardt et al. (2002) to analyze multifractal properties of non-linear temporal series is

carried out.
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Figure 9: Schematic representation of the “traveling observer” procedure, illustrating a pos-
sible configuration of points visualized at some angle. Considering the “active zone” of the
structures (the outer part of the surface that is exposed to aggregation), the point 1 has
higher probability, point 2 has moderate and point 3 has low probability of aggregation.

2.2.2 Multifractal Detrended Fluctuation Analysis (MF-DFA)

Let x; a periodic series of r. values between —x and =, of length NV, corresponding to

the number of pixels that form the contour, having mean 7.

(i) First an integrated series Y] is calculated as

=Y (z;-7),i=1,.,N; (2.2)

(i) The integrated series Y, is divided into NV, = [N//] non-overlapping segments of equal

length ¢, where symbol [.| stands for integer part.
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(iii) For all of the N, segments the fluctuation function F2(¢, v/) is calculated as

¢
1
F(r) =5 D AV [ =D i =@} v = 1., N (2.3)
i=1
where y,(7) is the fitting polynomial in segment v, representing the local trend.

(iv) The fluctuation function of gth degree for segment size /¢ is given by

N, 1/q
Fy(0) = {NiZ ST u)}w} (2.4)

v=1
where g can assume any real value between —oo and +o00 except zero, but in practical

applications it is truncated at some large positive and negative values.

(v) The function F;(¢) represents the partition function for this case (as previously intro-

duced by Eq. 1.2) and follows a power law

F,

q

(0) ~ ("D, (2.5)

where the generalized exponent h(q) is the slope of the linear regression between
log(¢) and log(F,(¢)). For a monofractal process h(q) is constant (independent of ¢),

and for a multifractal process h(q) is a decreasing function of q.

As is common in the literature using the MF-DFA approach, besides the functional form
h(q), the multifractal properties of contours are also investigated based on the so called

singularity spectrum f(«), achieved through the Legendre transform

fla(q,0)] =qa(q) —7(q), (2.6)
where
a(q) = dzl(qq) (2.7)

and 7(q) is the mass correlation exponent of the gth moment, defined as 7(q) = qh(q) — 1.
The singularity spectrum provides a mathematically precise and naturally intuitive descrip-
tion of the multifractal measure in terms of interwoven sets with singularity strength «, whose

Hausdorff dimension is f(«) (see e.g. Chhabra and Jensen (1989) for more details). In the
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case of a monofractal structure, the singularity spectrum produces a single point in the f(«)

plane, whereas multifractal objects yield a single humped function.

A set of parameters can be extracted from the multifractal spectra (Fig. 10) for charac-

terizing contour complexity, each with a clear intuitive interpretation:

a) ay, position of the maximum of f(«), corresponding to the point where ¢ — 0.

b) Aa, the width of the spectrum, estimate of the range of a where f(a) > 0, obtained

as Ao = Qmaz — Omin-

c) Aa+, the contribution of the positive part of ¢ in the range of the spectrum, estimated

by Aa+ = ay — Apmin.

d) Aa—, the contribution of the negative part of ¢ in the spectrum range, estimated by

Aa— = gz — Q0.

These four parameters serve to describe the multifractality of the signal, and hence the
“complexity"of the contour shape. If « is high, the signal is correlated and the underlying
process “loses fine structure”(exhibits a smoother contour). The width Aa measures the
range of fractal exponents in the signal; therefore, the wider the range, the “richer"are the
multifractal characteristics of the signal. Parameters Aa+ and Aa— work as a measure
of the dominance of low and high fractal exponents, respectively. The larger Aa— the
stronger the weight of high fractal exponents (corresponding to fine structure), and more

smooth-looking the spectra if Aa+ dominates.

Two different types of multifractality in time series can be distinguished, both requiring
a multitude of scaling exponents for small and large scale fluctuations: a) multifractality of a
time series can be due to a broad probability density function for the values of the time se-
ries; and b) multifractality can also be due to different long-range correlations for small and
large fluctuations (KANTELHARDT et al., 2002). Following these authors, the type of multifrac-
tality of contours is determined by analyzing the corresponding randomly shuffled series.

The shuffled series from multifractals of type b) exhibits simple random behavior, h(q) = 0.5
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fla)

Ao+ Ao—

Aa
Figure 10: Schematic representation of the multifractal parameters extracted from the sin-
gularity spectrum.
(non-multifractal scaling), while for multifractals of type a) the original i(q) dependence is
not changed (since the multifractality is due to the probability density, which is not affected
by the shuffling procedure). If both kinds of multifractality are present in a given series, the

shuffled series demonstrates weaker multifractality than the original one.

A dedicated program was written in the C programming language to implement nu-
merically the described methodological procedure. The software (calcradius ver. 1.1)
was developed with a user friendly interface, and is available for download from the link
http://www.pgbiom.

ufrpe.br/downloads/calcradius/.
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3  Fish First Sexual Maturity
Uncovered by Multifractal Analysis
of Saggital Otolith Contour
Fluctuations

3.1 Introduction

To demonstrate the power of the proposed novel procedure, we apply it to sagittal oto-
liths of two fish species, Mugil curema (Fig. 11A) and Merluccius merluccius (Fig. 11B).
Otoliths are calcified concretions found in a fish’s inner ear (Fig. 12) and are associated with
the functions of hearing, balance, and orientation (SOLLNER et al., 2003). They represent the
“black-box” of teleost fishes (LECOMTE-FINIGER, 1999), i.e. an important source of informa-
tion for ecological and biological knowledge of diverse fish species, as their physical and
chemical composition can be used to draw conclusions of diverse nature, such as habitat,
characteristics of daily, seasonal or annual growth, or stock structure and age (GREEN et al.,
2009). The richness of this information source has become indispensable for the current

stock evaluation and management practice (GREEN et al., 2009).

Inside of the fish inner ear, the otolith, sagitta, lapillus and asteriscus, are contained in
optic sacs, sacculus, utriculus and lagena, respectively (Fig. 12A). These structures act
as electro-mechanic sound and displacement transducers, converting the shear forces into
electrical impulses by kinocilia deformation on the macula (sensory tissue) (POPPER; HOX-
TER, 1981). The information is stored in the otolith during its biomineralization process,

which starts at the otolith primordium (LECOMTE-FINIGER, 1999) and continues with the pre-
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Figure 11: Examples of sagittal otoliths and their contours of (A) Mugil curema and (B)
Merluccius merluccius

cipitation of calcium carbonate regulated by the endogenous rhythm of calcium metabolism
(MUGIYA, 1987) and by secretion of neuropeptide in the inner ear (GAULDIE; NELSON, 1988).
They consist of calcium carbonate crystals contained in a protein matrix (proteins represent
0.2 to 10% of otolith composition) (LECOMTE-FINIGER, 1999). This protein matrix is functio-
nally essential in the process of otolith biomineralization, controlling the successive stages
of biomineral creation and their resulting shapes (ALLEMAND et al., 2007). The precipitation

of calcium carbonate is governed by the reaction (JOLIVIET, 2009)
Ca*t + 003~ — CaCOs + HT,

characterized by the saturation coefficient Sa? = |Ca®*| |HCO3™ | /K, where K; is the
solubility product. The precipitation occurs only when the saturation coefficient is greater

than unity.

Over the fish’s life, the rhythm of calcium aggregation changes, reflecting the growth
pattern of the fish and such periodic events as photoperiod variation, spawning, and migra-
tion (CAMPANA, 1999). These changes are reflected in the formation of micro- and macro-
structures around the primordium (Panella, 1971), the chemical composition, thickness,
and periodicity of formation of which are correlated with historic events and with the age
of the fish (CAMPANA, 1999). Therefore, it is expected that the fluctuations of the border

of the otolith can also be an expression of external and internal conditions over the growth
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A Dorsal

18
Anterior {:l

Figure 12: Anatomy of the inner ear. (A) Otoliths with the labyrinth system representation of
the teleost fishes. (B) Dorsal view of the vestibular apparatus of a common teleost. Ast =
asteriscus; Lag = lagenar vestibule; Lap = lapillus; Sac = sacular vestibule; Sag = sagitta;
sc = semi-circular channels; utr = utricular vestibule.

process. Through the “traveling observer” MF-DFA (chapter 2), we find that a multifractal
approach can discover relationships between contour features and such fish characteristics

as size and age at maturity, previously accessible only through costly and cumbersome

experimental techniques.

3.2 Image Sample

The sample was composed of 65 high-resolution otolith images of Mugil curema, from
the north region of Pernambuco (Brazil), and 32 of Merluccius merluccius, from Port de La

Selva (n = 13, Mediterranean Sea) and Galicia (n = 19, northeastern Atlantic Ocean). All M.
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curema otolith images were obtained from the DIMAR lab (DEPAg/UFRPE) and they were
captured using a charge-coupled device camera mounted on a microscope and processed
using an image-analysis system developed for calcified structures (TNPC: Visilog software
platform, NOESIS, France). M. merluccius otolith images were obtained from the image
catalog of the project Analiside FORmes d’Otolits - AFORO (LOMBARTE et al., 2006). Otoliths
were pre-processed to segment the otolith contours and were analyzed using the “traveling
observer” MF-DFA. The data series was constructed using the radius of the otolith contour

at an angle ¢, normalized by the zero-th harmonic.

3.3 Results and Discussion

The multifractal analysis of otolith contours in two species reveals clear multifractal
behavior. The generalized exponent h(q), the slope of the linear regression between log(¢)
and log(F,(¢)) (Fig. 13A), presents a monotonic decay with ¢ (Fig. 13B), and the singularity
spectrum has a humped shape (Fig. 13C). An observation of individual length and age
provides solid proof that the multifractal properties of otolith contour reflects life history
events. For M. curema, the o distribution shows a peak at 23.9 cm (fork length) (Fig. 14a)
and 3 years old (Fig. 14b). This peak closely corresponds to the length (23.3 cm) and age
(2.8 years old) at first sexual maturity for both sexes, as documented previously by Santana
et al. (2009) using gonads. Note that here we see no difference between the growth of

males and females.

On the other hand, for M. merluccius plotting « versus length/age (Fig. 15) reveals
two different patterns. We attribute this behavior to the fact that this species has different
growth rates between sexes, with females growing more quickly than males (MELLON-DUVAL
et al., 2010; PINEIRO; SAINZA, 2003) and reaching maturity at different sizes and ages. The
Mediterranean o, values show two peaks around 15.0 cm and 30.0 cm (total length) (Fig.
15a) and the corresponding peaks in age were one and two years old (Fig. 15b). A recent

study of the reproductive pattern of M. merluccius from the Mediterranean Sea estimated
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Figure 13: (A) Example of the log-log plot between the scale ¢ and the the partition function
F,(¢) obtained from the fluctuation contour of a M. merluccius otolith. (B) Plot of (a) the
gth moment versus the generalized exponent h(q) determined as the slope of the linear
regression between log(¢) and log[Fq(¢)]. (C) The singularity spectra f(«) derived from
the fluctuation contour of two M. merluccius (blue) and two M. curema (green) otoliths.

the length at first maturity of females to be approximately 35.0 cm (RECASENS; CHIERICONI;
BELCARI, 2008), which is very close to the second peak. Using the growth parameters
determined by Mellon-Duval et al. (2009) for females, the corresponding age at first maturity
is two years, precisely the age with the highest « value in our analysis. The two maximum
ay values for the Atlantic population were found to be 30.0 and 45.0 cm (total length) (Fig.

15¢), which match well the lengths of first maturity estimated by Pifieiro and Sainza (2003)

for males (32.8 cm) and females (45.0 cm) (Fig. 15d).

It is likely that there is less precision in the M. merluccius analysis due to the reduced

number of individuals in the available dataset. Nevertheless, it is clear that changes in
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Figure 14: Plot of oy parameter against (a) length and (b) age of M. curema individuals from
the north region of Pernambuco (Brazil). Green arrows represent the variation pattern of the
o observed with no distinction between sexes and the green vertical dotted lines indicate
the position of the length and age at first maturity estimated by Santana et al. (2009). (c)
Schematic representation of the roughness variation of the sagittal otolith contour of M.
curema through age.

the otolith contour during the fish’s life caused by alteration of the metabolic rate between
reproduction and somatic growth is captured by multifractal analysis. For these species, the

changes are reflected in the oy parameter, meaning that the sagittal otolith roughness level

follows the fish growth, as illustrated in Fig. 14c, while the general shape is kept unchanged.

Note that the determination of first sexual maturity of fish has to date been possible only
through costly and cumbersome experimental techniques (SANTANA et al.,, 2009). Thus the
multifractal analysis of otolith contours should prove to be an important tool in fish stock
evaluation and management. It is possible that multifractal spectra characteristics may also
be related to other fish life history events, and studies could be conducted for otoliths of

other vertebrates, such as birds and reptils.
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4 Multifractal Parameters in Otolith
Shape Classification

4.1 Introduction

It is well known that the shape of sagittal otolith varies widely from simple circular or
ellipsoidal forms to rather complex patterns, where a pronounced species dependency is
observed (NOLF, 1985). As mentioned in chapter 3, otlith has the function of balancing
and hearing. Regarding the latter, the response of a particular sound frequency by the
otolith as a transductor depends on its shape (GAULDIE, 2000). This implies that the otolith
shape and a certain proportion between the shape and the censorial area are maintained
during the fish life (LOMBARTE; POPPER, 1994), since the distribution of otolith morphotypes
reflects adaptations to optimize fish survival in the context of different environmental sounds

(GAULDIE; CRAMPTON, 2002).

Besides species-specific dependency, the otolith shape often presents clinal variation in
respect to geographical location (WORTHMAN, 1979) and/or depth (WILSON, 1985). Lombarte
and Castellén (1991) showed that the otolith shape is regulated by the species and in lower
degree by environmental factors. Furthemore, Galdie (1988) described other factors that
can controll the otolith shape, such as the shape of the optical capsule and the cranium,
and the growth discontinuity controlled by the macule. Consequently, the stimuli furnished
to the macule are provoked by environmental condition variations, such as photo-period,
temperature and feed regime (LECOMTE-FINIGER, 1999). These characteristics make the

otolith an excellent structure to be used in marine fish stock studies (GREEN et al., 2009).
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Up to date diverse techniques have been employed to quantify this variability, where
the use of landmarks (MONTEIRO et al., 2005; PONTON, 2006), elliptical Fourier analysis
(STRANSKY, 2005; TRACEY; LYLE, 2006; DUARTE-NETO et al., 2008) and Wavelet analyses
(PARISI-BARADAD et al., 2005; LOMBARTE et al., 2006), appear to be the most commonly used
techniques. Fractal analysis represents yet another approach to study complex shapes, that
has received far less attention in the context of otolith description, with only two studies that
use the fractal dimension (calculated by the box-counting method) as a shape descriptor
in classification problems (PIERA et al., 2005; DUARTE-NETO et al., 2008). The otolith contour,
based on a single fractal dimension, is found to be closer to a line than to an object that fills
the two dimensional Euclidian space, as observed by Duarte-Neto et al. (2008) for otoliths

of Coryphaena hippurus L., that presented values close to unity, varying from 1.19 to 1.25.

In the current context, fractal theory may be used in a more general sense, to quantify
the otolith shape complexity at varying scales, however treating the contour as a tempo-
ral series instead of a geometrical fractal. Therefore, the first multifractal analysis of the
otolith shapes, using otolith images of several species with different shape complexity, is
presented here. The contours were mapped onto a time series, using the traveling ob-
server MF-DFA (chaper 2). The multifractal spectra and parameters were investigated to
address the question of whether the sagittal otolith contour represents a simple (mono) frac-
tal, or a multifractal structure. Subsequently, the estimated parameters stemming from the
multifractal analysis were used as input variables in a traditional multivariate approach, in
order to test the usability of the current approach for otolith classification. While this is not
the principal objective of multifractal analysis in general (which should rather be understood
as a general technique for fluctuation analysis on all scales), this test may be seen as an
interface to other traditional quantitative methods employed for otolith analysis, since otolith
shape analysis should be based on multishape descritpors (CARDINALE; DOERING-ARJES;

GANGNON, 2004; DUARTE-NETO et al., 2008).
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4.2 Otolith Sample and Statistical Analysis

Thirty eight otolith images of five species, Zeus faber, Mora moro, Merlucius merlucius,
Ceratoscopelus maderensis, and Microchirus variegatus, with 8 otolith images for the first
four species and 6 for the last one, obtained from the image catalog of the project Analisi
de FORmes d’'Otolits, AFORO (LOMBARTE et al., 2006), were pre-processed to segment the
otolith contours. The otoliths of these selected species allow the analysis of a wide range

of shape otolith complexity, from a simple circular otolith to a very irregular otolith contour

? j(d) O(e) ®

Figure 16: Contour representation of (a) the standard circular shape, and otoliths of (b)
Ceratoscopelus maderensis, (¢) Merlucius merlucius, (d) Mora mora, (€) Microchirus varie-
gates and (f) Zeus faber.

(Fig. 16).

The parameter estimates resulting from the multifractal analysis may be used as input
variables for a subsequent classical statistical multivariate analysis. Here, we first examine
each variable (multifractal parameter estimate) for normality through Kolmogorov-Smirnov
Test, and then perform log-transformation if this criterion is not satisfied. Next, the Princi-
pal Component Analysis (PCA) is carried out to detect the degree of similarity among the
studied otolith complexity, from a multivariate perspective. The principal components that
account for most of the variance in the observed multifractal parameters were used for orde-
ring the otoliths in a lower dimension. Linear Discriminant Analysis (LDA) was then applied
to verify the potential of the multifractal parameters for species classification. All statistical

analyses were performed using the STATISTICA version 7.0 (StatSoft Inc.).
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4.3 Multifractal Properties Description

Fluctuations of sagittal otolith contours (Fig. 17) demonstrate multifractal behavior for
all species analyzed in the present work, as observed in Figs. 18-20. The generalized
exponent h(q) shows a monotonic decay with ¢ (Fig. 18), consistent with the expected
behavior for multifractal geometry, and different from a (non-fractal) circle (Fig. 18a), which
presented a constant value of h(q) ~ 1.0 for all . This behavior (constant i(q) ~ 1.0) was
also observed for the shuffled series plots, indicating multifractality of type b) for the otolith
contour fluctuations (long-range correlations). A more pronounced decay was observed for
Z. faber (Fig. 18f), followed by M. moro (Fig. 18c), and less accentuated for M. variegatus
(Fig. 18e; Table 1). The h(q) variability was always higher in the negative part of the ¢
range and almost constant for ¢ > 0, except for Z. faber and M. moro, where the generalized
exponent differs widely throughout the g range from one individual to another within species.
This behavior is also observed in the 7(q) vs ¢ plot, where 7(q) values for ¢ > 0 are very
close for M. variegatus and are remarkably overlapped for M. merlucius and C. maderensis
(Fig. 19).

Table 1: Average (+ standard deviation) multiracial parameters derived from the singularity
spectra of the five species analyzed.

Species
Parameters
C. maderensis M. merlucius M. moro M. variegatus Z. faber

Ah 047 +£0.13 0.514+£0.02 0.75x0.28 0.42+0.12 0.95+0.078
ol 2.02 +0.02 1.95+0.02 1.77+t0.14 1.87 = 0.08 1.86 =0.11
Ao 0.67 £0.15 0.76 £0.15 1.08+0.34 0.62+0.14 1.29 +0.17
Ao+ 0.21 +£0.04 0.144+0.05 0454+0.26 0.21+0.06 0.49 4+ 0.20
Aa— 0.46 +0.13 0.62+0.11 063=x=0.17 0.41=+0.11 0.80 £+ 0.04

The singularity spectrum showed a humped shape (Fig. 20), characteristic of multifrac-
tal structures in all studied cases. The multifractal parameters obtained from the spectra
of all species are presented in Table 1. The average values of «q present a narrow range
among species, from 1.77 (M. moro) to 2.02 (C. maderensis), however, with a pronounced
difference in « variances for M. moro and Z. faber, reflecting the fact that some otoliths of

these two species present smooth appearance, and others present a rough contour.
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Figure 17: Examples of periodic series of the contour fluctuation derived from the norma-
lized radius (r.) of the contour at the angle ¢ for (a) standard circle, (b) Ceratoscopelus
maderensis, (¢) Merlucius merlucius, (d) Mora moro, (e) Microchirus variegatus, and (f)
Zeus faber.

The Z. faber and M. moro spectra were wider (Aa = 1.29, Z. faber; Aa = 1.079,
M. moro), indicating a “richer"multifractality information content in these contour shapes
than in the other more simple otolith structures, reflecting the complexity of the shape, as
expected. In turn, M. variegatus shows “weaker"multifractal spectrum (Aa = 0.62), since
its shape is closer to a circle. In terms of the average A« values (Table 1), one may order
the otolith shapes of the analyzed species by level of complexity: Z. faber > M. moro >
M. merlucius > C. maderensis > M. variegatus. Dominance (Aa— and Aa-+) of high (fine
structure, ¢ < 0) and low (large scale, ¢ > 0) Holder exponent in the shape multifractality
spectra were equivalent for the two first species, while the singularity spectra for the other

three species were dominated by high exponents (fine structures) (Table 1).
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Figure 18: Plot of the gth moment versus the generalized exponent h(q) determined as
the slope of the linear regression between log(¢) and log[Fq(¢)] for (a) standard circular
shape, (b) Ceratoscopelus maderensis, (c) Merlucius merlucius, (d) Mora moro, (e) Micro-
chirus variegatus, and (f) Zeus faber. Black labels represent the ¢ dependence of h(q) for
the original contour series fluctuations, and grey labels correspond to the shuffled series,
indicating that 2(q) is independent of g.

These results indicate that the otolith contours of C. maderensis, M. merlucius and
M. variegatus vary in minor scales, as roughness, maintaining their general shape. Z.
faber contour shape is very complex, with great variability among individuals, mainly due to
differences on large scale, maintaining a similar level of fine fluctuations. M. moro and Z.

faber have similar level of complexity, however, M. moro presents greater variability among

individuals, both due to large scale and fine structure fluctuations.

4.4 Multivariate Statistical Results

All multifractal parameters presented normal distributions (Kolmogorov-Smirnov Test,

P > 0.05). Five PCs were obtained from the principal component analysis, however, almost
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Figure 19: Plot of the qth moment versus the multifractal scaling exponent 7(q) for (a) Cera-
toscopelus maderensis, (b) Merlucius merlucius, (¢) Mora moro, (d) Microchirus variegatus,
and (e) Zeus faber.

all of the total variance (91.79%) was found to be explained by the first two PCs. PC1

was strongly correlated (negatively) with Aa and Ah, log(Aa+). In turn, PC2 was more

correlated (negatively) with oy and Aa— (Table 2).

Consequently, the four quadrants of Figure 21 may be interpreted as follows: 1) simpler
shaped otoliths, such as the case of M. variegatus and some otoliths of C. maderensis and
M. moro; 2) complex shaped and smooth otoliths, dominated by large fluctuations, such
as M. moro and some otoliths of Z. faber; 3) complex shape, dominated by fine structure
fluctuations, where the most of Z. faber otoliths are located; and 4) simple shaped otoliths

with rough contour and dominated by fine structures, where M. meriucius and C. maderen-
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Figure 20: Singularity spectra f(«) for (a) Ceratoscopelus maderensis, (b) Merlucius mer-
lucius, (¢) Mora moro, (d) Microchirus variegatus, and (e) Zeus faber.

Table 2: Principal component and multifractal parameter correlation.
Principal Component

Parameters

PC1 PC2
Ah —0.98 —0.16
Qo 0.64 —0.66
Aa —0.99 —0.10
log(Aa+) —0.84 0.35
Aa— —0.77 —0.59
Eigenvalue 3.64 0.95
Cumulative Proportion  0.73 0.92

sis otoliths were found. Thus, the plot configuration of the studied species otoliths in the

principal component axes corroborates the previous descriptive analysis, drawn from the
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multifractal analysis alone.
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Figure 21: Scatterplot of species otolith scores in the two dimensional principal component
plane. The explained variance of each principal component is in parenthesis.

In the same way, Mahalanobis distance calculated between group centroids, submitted
to Linear Discriminant Analysis (LDA), showed the same complexity hierarchy of the otolith
shape described above, based on A« (Table 3). LDA indicated a relative potential of the
multifractal parameters for species separation. The parameter Ah was removed from this
analysis due its high correlation with Aa. Overall, 63% of the otoliths was successfully clas-
sified (Table 4). Only M. moro had a low percentage of correct classification. As described
above and shown in Figure 21, this species has a great variability among individuals, both
due to large scale and fine structure fluctuations, presenting otoliths very complex as Z

faber and simpler as V. variegatus.

4.5 Discussion and Conclusions

It was demonstrated in this work that the otolith contours should be characterized as
multifractal structures by a hierarchy of exponents, rather than a single fractal dimension.
This single exponent represents global properties of a structure and says nothing about
the local properties (LOPES; BETROUNI, 2009), although different biological patterns can be

adequately characterized by it. Analyzing otolith contours on the basis of multifractal theory
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Table 3: Mahalanobis distance (F statistics;P-value) between species group centroids.

Species Z. faber M. merlucius M. moro  C. maderensis M. variegatus

Z. faber 0.00 8.91 4.30 14.58 18.37
- 8.1,0.00 3.91,;0.01 13.25;0.00 14.31;0.00

M. merlucius 8.91 0.00 6.07 14.94 15.15
8.1,0.00 - 5.52;0.00 13.58,;0.00 11.80;0.00

M. moro 4.30 6.07 0.00 15.09 10.71
3.91,;0.01 5.52;0.00 - 13.71,;0.00 8.34,0.00

C. maderensis 14.58 14.94 15.09 0.00 4.85
13.25;0.00 13.58;0.00 13.71;0.00 - 3.78;0.01

M. variegatus 18.37 15.15 10.71 4.85 0.00

14.31;0.00 11.80,0.00  8.34,0.00 3.78,0.01 -

Table 4: Jackknifed classification matrix of species otoliths obtained trough linear discrimi-
nat analysis.

Species Classification Species

Error (1) (2 ) (4) (5
Z. faber (1) 0.25 6 0 2 0 0
M. merlucius (2) 0.25 1 6 1 0 O
M. moro (3) 0.75 3 0 2 0 3
C. maderensis (4) 0.25 o o0 1 6 1
M. variegatus (5) 0.33 0 0 2 0 4
Total 0.37 0 6 8 6 8

allows the description of the complexity of their shapes in more detail, from fine to large

scales, based on the distribution of the multifractal morphological exponents.

The use of the otolith radius normalized by the zero-th harmonic, to extract the fluctuati-
ons of the otolith contour, allows reflection about the otolith formation process, based on the
multifractal parameters obtained for each species. The otolith biomineralization process
starts from the otolith primordium (LECOMTE-FINIGER, 1999), a regular shaped structure,
secreted by the inner ear; here represented by the zero-th harmonic circle. The biomine-
ralization continues with the precipitation of calcium carbonate regulated by endogenous
rhythm of calcium metabolism (MUGIYA, 1987), resulting in a biomineral creation composed
of calcium carbonate crystals contained in a protein matrix (LECOMTE-FINIGER, 1999; ALLE-
MAND et al., 2007). If the calcium precipitation is homogeneous along the contour, i.e. with

the uniform probability of aggregation along the otolith boundary during the biomineraliza-
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tion process, then it may be expected that the shape of an older individual should be very

similar to the initial shape (a circle).

It follows from the above reasoning and the estimated multifractal parameters, that C.
maderensis and M. variegatus contour shape did not substantially change from the initial
shape during the biomineralization process, reflecting both a uniform (or isotropic) pro-
bability of calcium carbonate aggregation along their otolith contour, and a homogeneous
aggregation rhythm among specimens. It was found that Aa for M. merlucius is greater
than for the two former species, followed by M. moro and Z. faber, suggesting that the in-
crease of width of the range of the singularity spectrum reflects increase of anisotropy of the
aggregation probability along the contour. More precisely, this range reflects the noise cor-
responding to the fluctuations of the contour, caused by the protrusions and cavities in the

otolith shape, which represent sites in the otolith with low and high aggregation probability.

Another possible conclusion is that as elevated Aa— values reflect enhanced small-
scale fluctuations (roughness, perhaps stemming from temporal fluctuations of the local
deposition probability), as observed for M. merlucius. Possibly, multifractal parameters may
be used as input ingredients for future microscopic growth otolith models, reflecting the

degree of heterogeneity of aggregation probability.

Fractal dimension of otolith contour was estimated by Piera et al. (2005) and Duarte-
Neto et al. (2008) using box-counting method. However, as highlighted in chapter 2, this
technique has been demonstrated to be rather problematic for the multifractal approach. On
the other hand, the methods commonly used for multifractal analysis of time series do not
present problems (KANTELHARDT et al., 2002; MUZY; BACRY; ARNEODO, 1991; OSWIECIMKA;
KWAPIEN; DROZDZ, 2006). Among them, MF-DFA yields reliable results both for large nega-
tive g and for shorter signals (OSWIECIMKA; KWAPIEN; DROZDz, 2006), besides having lesser
requirements for computational power (KANTELHARDT et al., 2002). This method has de-
monstrated to be rather satisfactory for analysis of otolith contour fluctuations in the current
work, and no problems have been experienced in the implementation. As commented in

chapter 2, the combination of this multifractal methodology with the Fourier regular analysis
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brings two distinct advantages to the contour multifractal analysis: invariance to size, and
multiple values for a single angle. However, differences in image resolution could be a limi-
tation for its use, since a higher resolution should exhibit more particularities of the images.
To avoid possible complications due to such an effect, all the images analyzed here were

taken at the same resolution.

It was demonstrated here that the multifractal properties may be used for species dis-
crimination, although this is not the main focus of multifractal analysis, nor does it represent
the sole objective of the current work. Future research efforts shall be directed to study the
effect of additional features, such as temperature, feeding, and other environmental varia-
bles, in the attempt to relate the differences observed in the multifractal parameters, with
those features. A user friendly program that implements multifractal analysis as proposed
in this work is available at the site http://www.pgbiom.ufrpe.br/downloads/calcradius/, since
the composite procedure described here is in fact rather general (it is not limited to otolith

shape analysis), and may be carried out for multifractal analysis of any closed contour.
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5 Multifractal Analysis of
Microscopic Aggregation Growth
Model

5.1 Introduction

Simulation growth models are widely used to describe many different growing natural
structures, constructed to reflect the essential features of specific growth phenomena, that
are, however, shared by other phenomena in nature (VICSEK, 1989). Scaling laws, mono
and multifractal properties and phase transitions that are intrinsic to the growth of artificial
structures represent examples of features that can be compared with experimental data ob-
served during the growth of natural structures, helping to understand their growth process
on the base of simulations. For instance, the physics of far-from-equilibrium growth phe-
nomena represents one of the main fields where fractal growth models are applied. The
choice of the most appropriate model to explain the growth of any given phenomenon is an
important step in order to identify the minimal set of factors that govern the growth process
and the formation of large clusters by aggregation of identical subunits (particles) in nature,

allowing one to investigate the relevance of each factor.

A wide variety of materials, like colloids, polymers, aerosols ceramics, glasses and thin
films are formed by aggregation (BARABASI; STANLEY, 1995). Aggregation is the process
when identical particles are joined into clusters according to some rule. To represent this
process, simulations are usually carried out on regular lattices and the diameter of the parti-

cles is assumed to be the same as the lattice spacing, but many variations of this basic idea
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can be simulated. Two main geometries are most commonly considered: a) aggregation is
conducted along a surface, or b) it starts from a single seed particle. Aggregation almost
always leads to ramified structures with fractal geometry. An important characteristic of the
simulations is that the relevant details of the models are governed by the physics of the
aggregation process being simulated. In particular, the trajectory of the particles plays a

decisive role (VICSEK, 1989; MEAKIN; FAMILY; VICSEK, 1987; BARABASI; STANLEY, 1995).

One characteristic that is common to all growth process is the existence of “active” and
“frozen” regions over the cluster surface. The first region comprehends, usually, the outer
part of the surface that is able to receive new particles and the "frozen"region represents

the union of all parts hidden by (or behind) the “active” part (PLISCHKE; RACZ, 1984).

Examples of the classical growth models are the Eden model (EM), ballistic deposition
(BD) and diffusion limited aggregation (DLA). Eden model was introduced in 1961 by M.
Eden to describe the formation of cell colonies, e.g. bacteria and tissue cultures (EDEN,
1961), and is defined as follows. On a lattice, a particle or a surface seed is placed at
the origin. A new particle is added at any site chosen randomly around the perimeter of
the seed, forming a two particle cluster. After many such aggregation steps, performed
at randomly chosen sites at the perimeter of the existing cluster, the model generates a
compact cluster with a rough perimeter (Fig. 22A). The BD model was introduced in turn
to model colloidal aggregates (BARABASI; STANLEY, 1995). In this model, the particle moves
on a straight trajectory until it encounters the growing cluster, and sticks to its perimeter
irreversibly (VICSEK, 1989). Here, the seed can be a surface (Fig. 22B) or a single particle

(Fig. 22C).

The standard DLA model was first introduced by Witten and Sander in 1981 and it is
based on the following process: a seed particle is fixed at a central point of the substrate
and another particle is released from a random position away from the seed. The relea-
sed particle moves according to a Brownian trajectory until it reaches one of sites on the
perimeter of the seed, when it is fixed, forming a cluster of two particles. This process is

carried out repeatedly (Fig. 23). The probability of growth of a certain site of the perimeter
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corresponds to the probability of a random walker to visit this site. This probability (u) obeys
the steady-state diffusion equation

Vu=0 (5.1)

where u = 1 at infinity, v = 0 in peripheral sites. The probability for a peripheral site to be
visited is proportional to the flow on this site, ie. p «x Vu. On the square lattice, DLA model

can be described by the discrete Laplace equation
Ui 5 = (ui_lvj + Uiyp1,5 + U511 + um_l)/él (5.2)

The resultant cluster of a DLA process is characterized by a branched shape (Fig 22D).

Figure 22: (A) A Eden cluster consisting of 5000 particles started from a single seed (VIC-
SEK, 1989); (B) Ballistic deposition cluster with 35,000 particles started from a surface (BA-
RABASI; STANLEY, 1995); (C) off-lattice balistic aggregates with 180,000 particles started
from a single seed particle (VICSEK, 1989); and (D) square-lattice diffusion limited aggrega-
tes with 50,000 particles.
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In turn, the generalization of the DLA model proposed by Batchelor and Henry (1992),

takes into account the local sticking probability s defined as
5= af)_B (5.3)

where the parameter 0 < «,, < 1 corresponds to the local “surface tension”, and B € 1,2, 3

is the number of neighboring sites seen by the incoming particle.

Figure 23: Schematic representation of a square-lattice diffusion limited aggregation pro-
cess. In step 1: a seed particle (black pixel) is fixed at a central point of a circle with radius
equal to r,,.,. Particles are released one by one from a random position on the circle,
and move according to a Brownian trajectory to reach one of the 4 nearest neighbors of
the seed, when it is fixed, forming a cluster (white pixels). In step 2: a Ar was added to
the initial radius, aiming to keep a uniform distance between the initial position of the new
particle and the cluster during the aggregation process. A new particle is released when
the previous particle attach to the cluster (as show for P1) or reaches the outer circle (being
removed) (as show for P2).

DLA patterns are fairly common in nature, including biological phenomena, such as
bacterial, neural and stony coral growth (BARABASI; STANLEY, 1995; KAANDORP et al., 1996;
MERKS et al., 2003). Due to the simplicity of the algorithm, DLA model should permit simu-
lations and evaluation of diverse environmental, morphological and physiological scenarios
simply by changing the original conditions that characterize the standard DLA model de-
finition described above. Indeed, this model is easily generalized, and hence it plays a
paradigmatic role in the field of kinetic growth phenomena (HANAN; HEFFERNAN, 2012). Be-

cause of this generality, we use the DLA model in our simulations to generate aggregation-
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based structures from different growth conditions, and then, the multifractal properties of
their perimeter fluctuations were evaluated using the “traveling observer” MF-DFA appro-

ach (described in chapter 2).

5.2 Simulations

The simulations were performed using a program written in C language divided in tree
main steps: 1) the growth of the aggregates, 2) the aggregate contour tracing, and 3)

multifractal analysis of the contour.

5.2.1 Step 1: the growth of the aggregates

The probability of growth , directional bias in movement, and the probability of laun-
ching particles were modified with respect to the standard DLA model. Based on these

modifications, four scenarios were evaluated:

1. «), varied from 0.01 to 1.0 with step of 0.01.

2. In this scenario, for each «), value, p; (probability of motion in a given direction ¢,
equivalent to the particle flow) varied from 0.1 to 0.9 with step of 0.1. The probability

of motion for each of the other three directions was taken to be p; = (1 — p1)/3.

3. Here, two perpendicular directions probabilities were considered. For each «,, value,
probability of motion in two directions were changed, p; and p., varying from 0.1 to

0.9 with steps of 0.1.

4. In this scenario, instead of launching particles uniformly from a distant circle, von
Mises distribution was used to simulate preferential source of particles (see Appendix
A). For each «,, value, the location (1) and concentration (x) parameters of the von
Mises distribution were modified. Two values of i« were considered 37 /2 and 57 /4,

and « varied from 8 to 0.5, with step of 0.5, for each location.
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For each of the scenarios first a seed was placed at the center of a 512 x 512 matrix.
The new particles were then released from a random position (according to a uniform, or a
von Mises distribution) on a circle with initial radius of 100, after which they move randomly
in four directions (up, down, left and right), each one with a given (pre specified) probability.
Particles that reach the launching circle are discarded, and the ones that reach the growing
cluster perimeter stick with probability s (Eq. 5.3), or continue moving with probability 1 — s.
Every time that a particle sticks to the cluster, the size of the cluster radius (maximum dis-
placement from the center) is compared with the launching circle radius, which is in turn
increased as to maintain a minimum distance of Ar = 10 (Fig. 23). As opposed to the
standard DLA model, this choice of a small cluster to launching circle distance was made
to maintain chambers of size comparable to that of the cluster itself, that is commonly en-
countered in nature. Finally, the aggregation process terminates when the cluster reaches
the size of 50,000 particles. Each growth condition was repeated 20 times to minimize

variations due to random noise.

5.2.2 Step 2: the aggregate contour tracing

Once the cluster was obtained, the matrix containing information on cluster particle
positions was used to extract the contour of the aggregate. To trace the contour we used
8-connected boundary pattern as shown in Fig.24. In practice, the pixels that formed the
contour were the black pixels connected with other black pixel and with at least one white

neighbor.

5.2.3 Step 3: multifractal analysis of the contour

This step was carried out using the procedure described in chapter 2. The x and y
coordinates of the cluster contour pixels were used to determine the radius of each contour
point and the average radius of the structure (zero-th harmonic), used to normalize the
individual contour pixel radii. Thus, for each set of input parameters a series of normalized

radii from —7 to m was obtained. We fixed the degree of the polynomium that is fitted to the
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Figure 24: Representation of the contour tracing procedures of an (A) object (black pixels)
by a (B) 4-connected and (C) 8-connected boundary pattern. The contours are shown in
blue.

segment v in Equation 2.3 to one, and the ¢ values in Equation 2.4 varied between -10 to

10 with Ag = 1.

As described in chapter 2, the generalized exponent h(q) is the slope of the linear
regression between log(¢) and log(F,(¢)). The value of h(q) is very sensitive to the choice
of the range of points that are used for fitting, manly to those that represent very small
and very large scales. If all points in the log-log plot lay on a straight line, then the choice
of range would not alter the slope. However, if there are outliers that deviate from the line,
then removing these points would lead to a substantial change in the h(q) value. For all data
series, a stable estimation of 2(q) is desired, so in order to avoid problems with outliers one
could make a visual choice of the range or consider a minimum value of goodness of fit,

using, for example, the coefficient of determination R2.

Here, a more robust protocol is used, quantifying the effect of each point in the log-log
plot by determining the leverage effect through DFBETAS regression diagnosis (DAMOURAS

etal., 2010)
h(g) — h(q)i
std(h(q)i)

where h(q) is the slope of the log-log plot with a wider range and h(q); is the slope of

DFBETAS(i) = (5.4)

log-log plot at the reduced range obtained by truncating the data at point . DFBETAS are
distributed as t(m — 2)/+/m, where t(m — 2) is the t-distribution with m — 2 degrees of

freedom and m is the number of segments (scales). Based on this distribution it is possible
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to calculate a p-value for the statistics and then determine if the point being evaluated has

significant effects (p < 0.05). So, we proceeded as follows:

1. First the linear regression was conducted using the entire range. If R? value was
found to be lower than 0.94, we performed the next step, and if it was found to be

greater than or equal to 0.94, we considered that the fit was adequate;

2. The DFBETAS diagnosis was conducted successively for the points on the extremes,
alternating between smaller and larger scales. This procedure is terminated when R?

of the new fit reaches 0.94, or if the number of segments is reduced to 25.

This procedure leads to a stable estimate of the slope in the sense that it is not overly
reliant on small or large segment sizes. The rest of the procedure followed the routine
describe in the chapter 2. The behavior of the cluster growth in each scenario was evaluated
considering both the qualitative changes in the cluster shape and the multifractality of their

perimeter fluctuations.

5.3 Results and Discussion

5.3.1 Microscopic aggregation growth as a function of the “surface
tension” - Scenario 1

5.3.1.1 Morphological changes

All clusters obtained here (Fig. 25) are isotropic or converge to an isotropic shape with
the increase of the number of particles, since the particles are released from an uniform
random position and move according to a Brownian trajectory. Clusters obtained with a low
a, value are more compact, resembling an Eden-like cluster, and the closer «,, gets to unity,

the more standard DLA-like the cluster becomes.

For DLA growth, parameter «, is analogous to the “surface tension” (MEAKIN; FAMILY;
VICSEK, 1987; BATCHELOR; HENRY, 1992).This analogy is often related to fluid-fluid interac-

tion, when the shape of the surface of a fluid depends of the properties of the fluid or surface
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that is in contact, such as the viscous fingering, studied by Meakin et al. (1987). The re-
ference to the effect of “surface tension” on the form of aggregates was made early by
D’Arcy Thompson in 1917 to describe the form of aggregates of cells and tissues (THOMP-
SON, 1992). However, independent of the kind of phenomenon, the effect of surface tension
results in minimizing the area that the present conditions and circumstances of growth will
permit, i.e. the possible reduction of the surface in contact, reflecting minimization of po-
tential energy of the system (equilibrium state). It can be seen on Figure 25 that the lower
a, values yield stronger (or more complex) particle connections, since the particle needs
more neighbors to be fixed to the cluster, resulting in a more smooth, reduced surface. In-
creasing this parameter the clusters start to present a more rough border with protrusions
and cavities, increasing the surface in contact with the environment. Hence, the way that
particles connect one to another appears to be an important characteristics that controls

the shape of a structure in terms of the roughness of the border and surface.

This characteristics is observed during the biomineralization process in nature, especi-
ally during the construction of crystalline polymorph structures composed of calcium carbo-
nate: calcite, aragonite and vaterite (Fig. 4). Mukkamala et al. (2006) demonstrated how
the environment controls the mineral phase and the growth of the mineral in terms of its
shape (including the border appearance) and size in the final structure. Modifications of the
environmental conditions change the morphology of calcium carbonate crystal and, conse-
quently, the way that crystals and their molecules aggregate. Besides the environment, the
protein matrix (that is regulated genetically) is functionally essential in the process of bio-
mineralization, controlling the successive stages of biomineral creation and their resulting
shapes (ALLEMAND et al.,, 2007). For example, experiments suggest that with reduction of
the gene starmaker activity the otolith of zebrafish presented a rough surface, rather than
the normal smooth appearance (SOLLNER et al., 2003). It seems that modification of this
gene affects the level of protein formation, and hence, causes changes in the structure of

the protein matrix and calcium carbonate crystal aggregation.
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Figure 25: Morphological diagram of clusters with 50,000 particles aggregated with different

“surface tension” (o, values).

5.3.1.2 Multifractal properties

The contour fluctuation of the aggregates showed multifractal behavior (Fig. 26) for the

entire range of «,. The generalized exponent h(q) shows a monotonic decay with ¢ (Fig.
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26A), 7(q) shows two different regimes for negative and positive ¢ (Fig. 26C) and the singu-
larity spectrum showed a humped shape (Fig. 26D). Both kinds of multifractality are present
in the cluster fluctuations, multifractality due to a broad probability density function and due
to different long-range correlations for small and large fluctuations, since the shuffled series

demonstrated weaker multifractality than the original ones (Fig. 26B).
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Figure 26: Plots of the gth moment versus the generalized exponent h(q) determined as the
slope of the linear regression between log(¢) and log|[Fq(¢)], obtained from (A) the original
series and (B) the randomized series, (C) the gth moment versus the multifractal scaling
exponent 7(¢), and (D) the singularity spectra f(«) for different values of «,.

Figure 26 shows that the multifractality of the aggregates depends of «,,, becoming
weaker as the standard DLA limit (o, = 1) is approached. Weak multifractality of DLA
was observed in several studies both with respect to growth probability measure (NAGATANI,
1988) and local density of multifractal geometry (VICSE; FAMILY; MEAKIN, 1990; HANAN; HEF-
FERNAN, 2001, 2012). The strongest multifractality was observed for a,, = 0.07 (Fig. 26D
and Fig. 27B), and the peaks observed for Aa, Aa— and Aa+ in Figures 27 B,C and D

correspond to this value.

In fact, if one considers the sticking probability «,, as the parameter which brings about
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perturbations in the contour (equivalent of temperature in thermodynamics), the central
position o of the singularity spectrum as the order parameter (the higher the value of
this parameter, the smoother the contour), and A« as the response function (derivative of
the order parameter), than curves displayed in Fig. 27 A and B are strikingly reminiscent
of their thermodynamic equivalents (e.g. magnetization and susceptibility, or density and
compressibility). From this point of view the current results suggest that o, = 0.07 is a(n)
(effective) critical point representing a phase transition between an “ordered” phase (rather
smooth contour on large scales, but with pronounced multifractality), and a “disordered”
phase (a rough contour on large scales, but of low multifractality). The otoliths showed in the
previous chapter can be therefore considered to present contours falling within the ordered
phase, while standard DLA clusters and, possibly stony corals, fall into the disordered phase

region.

It follows that multifractal parameters from the current approach may be used to ex-
press quantitatively the level of organization of particles in natural aggregates, and bring
about remarkable similarities with behavior of other model systems of statistical physics. In
particular, the existence of a possible “phase transition” suggests a new venue of research

regarding contour shapes, and perhaps promising a whole new level of their understanding.

5.3.1.3 Finite Size Scaling

In figure 26, we showed a slight dependency of h(gq) on ¢, representing a weak mul-
tifractality of the DLA-like cluster contour fluctuations (o, = 1) with 50,000 particles, as
observed in several works with different measures and cluster size (NAGATANI, 1988; VICSE;
FAMILY; MEAKIN, 1990; HANAN; HEFFERNAN, 2001, 2012). Concerning the multifractality of
the DLA-like structure, there are two different opinions among the authors: 1) the growth
of DLA-like objects deviates from a simple power law and requires a hierarchy of expo-
nents; and 2) the DLA-like objects present strong finite-size effects and this is believed to
be the cause that simple scaling cannot accurately describe these structures, but should

hold asymptotically (LAM, 1995).
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Figure 27: Variation of the multifractal parameters as a function of the “surface tension
parameter «,,. Open circles correspond to the mean values and bars to & the standard
deviation.

In this context, the existence of finite-size effects on the multifractal parameters of the
contour fluctuation of the aggregates is analyzed here. For this, growth of clusters of diffe-
rent sizes L (2000, 10000 and 50000 particles) were simulated, using the same procedure
as described above. On the resulting clusters, we applied the "travelling observer"MF-DFA
approach and the multifractal parameters oy, Ac, Aa+and Aa— were obtained from the

singularity spectra.

The “order parameter"and “response function"behavior observed for contour shapes in
the previous section is reminiscent of a (smooth) second order phase transition. While the
order parameter in the thermodynamic limit is nonzero below the critical point, and zero
above the critical point, finite size effects induce a "tail"in the order parameter curve, as
shown in Fig. 28, and a maximum (or a cusp) in place of divergence of the response

function. The type of transition (universality class) is characterized by critical exponents,
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which govern the behavior at the critical point (STANLEY, 1971; BRANKOV, 1996).

While considering finite size systems “destroys"typical phase transition behavior of or-
der parameter and response functions, the concept of finite size scaling helps extracting
the phase transition characteristics from finite system behavior (BRANKOV, 1996). The most

used scaling functions are as follows:

1. M o |t|” (thermodynamic limit in the vicinity of the critical point) or M = L=3/¥ g\, (tL'/)

(finite-size system);

2. x o [t|77 (infinite system) or y = LV g, (tL'/") (finite-size system);

3. C o [t| (infinite system) or C' = LV g (tL/") (finite-size system);

4. & oc |t|7 (infinite system) or & = Lge(tL'/") (finite-size system);
where M, y, C' and & are, respectively, the magnetization (order parameter), magnetic
susceptibility, heat capacity and correlation length, and 5, v,  and v are the corresponding
critical exponents that govern the behavior of the system near the critical point. The variable

t is defined as (7' — T.)/T., where T' is temperature and 7. is the temperature at the critical

point.

T

Figure 28: Left: Magnetization in the thermodynamic limit. Right: Magnetization in a finite
size system with different system sizes (from Pro-seminar in Theoretical Physics by H. G.
Katzgraber).

A strong dependency of the h(q) behavior (Fig. 29A) and the multifractal spectrum

(Fig. 29B) on the cluster size is observed for the contour fluctuations, indicating pronoun-
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ced finite-size effects. Clusters with different sizes present different multifractal patterns.

However, independent of the cluster size, multifractality was always obtained.

Lam (1995) advocates the view that the multifractality of DLA measures, such as growth
probability and local and radial densities, are highly influenced by finite-size effects on the
basis of a variety of numerical results. Examining the present results for the DLA-like clus-
ters, there seems to be no clear difference between the multifractality of clusters with 10,000
particles (closed blue squares in Figure 29) and 50,000 particles (closed blue circles in Fi-
gure 29), which indicates a collapse of the multifractal properties of “active” contour fluctua-
tion of the DLA for larger clusters. This suggests that the normalization used in the current
"traveling observer"MF-DFA approach, with respect to the zero-th harmonic reduces (or

eliminates) finite size effects for DLA clusters above roughly 10000 particles.

Figure 30A shows some sample images of the growing structures for different cluster
sizes, and different «, values. These images represent the clusters from some (arbitrarily
chosen) reference points of the plot of oy versus «, (Fig. 30B), for different sizes: maximum
value of ag, 90% of the maximum, average «, (half-height) and minimum value. For all
cluster sizes, the center of the singularity spectrum «y demonstrates monotonic decrease

with increase of o, (Fig. 30B), till reaching saturation.

Observing Figures 30B and 31A it is clear that dependency of oy and A« on a,, chan-
ges with the size of the cluster. Thus, finite-size scaling technique was used to collapse
the curves and to generate universal, size independent curves. The crossing point of the
curves, i.e. «, = 0.07 was adopted here as the critical point (recall that a,, here plays
the role of temperature). Following the order parameter and response function analogy, the
scaling was reached through the magnetization scaling function, M = L‘ﬁ/”gM(tLl/”), and

susceptibility scaling function y = L g, (tL'/¥).

On Figures 30C and 31B we show results of finite-size scaling, collapsing the curves
for cig and Aaq, for clusters of different sizes, onto universal curves, independent of size.

The scaling was accomplished for v = 3/2, v = 0.24 and 3 = 0.0, wherefrom one may
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Figure 29: Plots of (A) the generalized exponent h(q) determined as the slope of the linear
regression between log(¢) and log[Fq(¢)] and (B) the singularity spectra f(«) for different
values of «, and cluster size. Black, red and blue colors correspond to «;, equal to 0.01, 0.07
and 1.0, respectively; open circle, closed square and closed circle correspond to clusters
formed by 2,000, 10,000 and 50,000 particles.

conclude that the system undergoes a second order phase transition near «,, = 0.07 with

an ordered phase at o, < 0.07 and disordered phase at o, > 0.07.

5.3.2 Microscopic aggregation growth as a function of the “surface
tension” and flow - Scenario 2 and 3

5.3.2.1 Morphological changes

Preferential flow direction of incoming particles can bring about significant effect on the
resulting aggregate shape, which may be fundamental for modeling growth phenomena of
structures in confined geometries, and/or in presence of external fields. Generally speaking,
curvilinear force fields can produce extremely diverse and realistic (even artistic) patterns
(LOMAS, 2012), but a comprehensive understanding of cause-effect relationships in complex

scenarios is still lacking.

Two simple scenarios are therefore considered in the present work (as mentioned in
section 5.2.1) with a bias in a single direction (while the other three directions are equipro-
bable), and with bias in two directions. Resulting clusters of a large number of simulations

for different values of probabilities p; and p2, as well as different values of sticking pro-
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Figure 30: Multifractal properties of the perimeter fluctuations of clusters of different sizes
L (2000, 10000 and 50000 particles) obtained from the generalized DLA model preposed
by Batchelor and Henry (1992). (A) Sample images of the growing structures for different
cluster sizes, and different «,, values from reference points of the plot of B. (B) Average ma-
ximum point of the multifractal spectra, «, as a function of the “surface tension” parameter
a, for different cluster sizes. The collapse (C) of the curves in B was achieved for the critical
exponents 5 = 0.0 and v = 1.5 (o, = o, — v, ).

bability o, (surface tension) are displayed in Figs. 32 and 33, where a wide spectrum of
shapes can be observed. As may be expected, generally speaking the aggregates obtained

in these scenarios tend to grow more rapidly in the direction of the increased incoming flux,

yielding anisotropic clusters.

Besides, the higher the probability of a preferable direction, the less spread turns out

the aggregate, with no influence in the formation of branches, but the type of the branches
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Figure 31: (A) Average width of the multifractal spectrum, Aa, as a function of the “surface
tension” parameter «,, for different cluster sizes. The collapse of these curves (B) was
achieved for the critical exponents v = 0.24 and v = 1.5 (Oz; =y — Qp,).

and the surface of the cluster turn out to be different when the fluxes increase. Broader
branches and more compact surface (but not in totally) are observed for higher fluxes,
converging to a BD-like aggregate. This occurs because the growth probability inside the

cluster increases as the particles lose the natural motion and go straight in some direction,

such as the effect of a magnetic field or a low density environment.
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Figure 32: Morphological diagram of clusters with 50,000 particles aggregated for different
a, (x axis) and flow, p; (y axis)

However, the branch formation and roughness still more related with o, i.e. the way

that particles aggregate, since branches are only observed for cluster with «,, higher than
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0.1. The results for scenario 3 (control of the fluxes in two perpendicular directions) turned
out very similar to the previous scenario, except to the fact that asymmetric shapes are

obtained when the two probabilities are different (Fig. 33).
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Figure 33: Morphological diagram of clusters with 50,000 particles aggregated for different
o, and flow, p; (left to right) and p, (up to down)

The influence of particle flow in the resulting shapes during growth process has been
extensively discussed in the literature for two calcareous structures, fish otoliths and stony
corals. Wu et al. (2011) showed experimentally that hydrodynamic effects inside the inner
ear controls the particle motion from a Brownian motion to cilia-driven flow, and the otolith
self-assembly is related to this balance of motion and the particle localization in solution.
Pronounced anisotropy of fish otholits (that is rather common) may therefore be attributed

to different growth probabilities of sites exposed to the flux of incoming particles, as cor-
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roborated with the simulations performed in the present work. The similarity between the
simulated aggregates and real fish otholits is highlited in Figure 34, which strongly suggests

that flux may be one of the most important factors that control the overall shape of otholits.
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Figure 34: Schematic representation of the similarity between artificial cluster (50,000 par-
ticles) obtained in the present work (scenarios 2 and 3) and fish otoliths.

In the case of stony corals, several papers have discussed the influence of flow and nu-
trients concentration in branch formation for branched species, based on Laplacian growth
(KAANDOREP et al., 1996; MERKS et al., 2003) and, more recently, on independent polyp growth
(MERKS et al., 2004). However, the level of influence of flow on coral growth is still not well

understood. Merks et al. (2003) concluded that branch formation is spontaneous in their
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Laplacian-based growth model and the compactness of the corals depends on the ratio of
the rates of growth and nutrient transport. In a subsequent work, the same authors stated
that the spacing of polyps influences the thickness of branches and the overall compact-
ness. On the other hand, the results obtained by the present DLA generalization model
indicate that branch formation in the simulated clusters depends primarily on the surface
tension (), and the thickness of branches and the overall compactness depends on both

surface tension and flow.

5.3.2.2 Multifractal properties

In Figure 35 the singularity spectra are displayed for several combinations of values
of the sticking probability o, (surface tension) and several values of the directional bias
probability (flux) p;. It is seen that higher flux values result in more compact and smoother
structures, shifting the multifractal spectrum to the right (Fig. 35B). However, as can be
seen from Fig. 36A, this effect is only significant fro «,, values close to critical value of 0.07,
when protrusions and cavities start to appear in the clusters. The flux increases the growth
probability in these parts, and consequently the surface compactness is also increased.
For values of p; higher than 0.6 and at high surface tension, the flux has almost no effect.
Similar situation is observed when two direction motion probabilities are controlled (p; and
p2), as high probabilities always present higher o, values, and saturation is achieved at high

surface tension (no significant effect of the flux is observed) (Fig. 37).

Beside the fact that a preferable motion direction permits that particles reaches deeper
sites, the growth probability also increases due to directional bias that the flux imposes to
the cluster growth. In practice, if a particle reach the cluster, but does not stick to it, the
chance to return and try again at the same position till the adhesion occurs increases with

the flux.

The flux effect is noted not only in the ay parameter (position of the spectrum), but also
in the width of the spectrum (Fig35 and Fig. 36B-D). The multifractal spectra of clusters with

flux higher than 0.3 are wider for both small and large scales, as indicated by the red region
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Figure 35: Plots of (A) the ¢th moment versus the generalized exponent h(q) determined
as the slope of the linear regression between log(¢) and log[Fq(¢)] and (B) the singularity
spectra f(«) for different values of “surface tension” (a;, = 0.01 - open circle; a;,, = 0.05 -
closed circle; a,, = 0.1 - closed square; and «, = 0.5 - open square) and flux (p; = 0.9 -
black; p; = 0.6 - red; and p; = 0.3 - green).

in Figures 36B-D. Furthermore, around p; = 0.3 the multifractal spectrum width parame-

ter distributions (Aa, Aa— and Aa+) lose the point of maximum, becoming monotonic

functions of o, and p;.

Similar behavior is observed in simulation of the Ising model considering the influence
of a magnetic field. In this model, the magnetic field decreases the magnitude of the sus-
ceptibility peak for finite systems, while in the thermodynamic limit presence of a finite field
destroys the singularity at the transition point (STANLEY, 1971). This represents a further
analogy with magnetic phase transitions, and a further indication that the multifractal pa-
rameters o can be treated as a order parameter and Aa as response function, while a,,

plays the role of temperature.

5.3.3 Microscopic aggregation growth as a function of the “surface
tension” and particle concentration- Scenario 4

5.3.3.1 Morphological changes

In the previous scenarios, the particles were released from an uniform random position

on the circle that envelopes the cluster. In the present case, a pre-defined locations was
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Figure 36: Phase diagram of the four multifractal parameters determined from the aggre-
gates contour fluctuations in function of different “surface tension” («;,) and flux (p1). (A)
ap, position of the maximum of f(«), corresponding to ¢ = 0; (B) Aa, the width of the
spectrum, estimate of the range of o where f(«) > 0, obtained by Aa = qar — Qmin;
(C) Aa—, the contribution of the negative part of ¢ in the spectrum range, estimated by
Aa— = apme: — ap; and (D) Aa+, the contribution of the positive part of ¢ in the range of
the spectrum, estimated by Aa+ = oy — @min.

used (u = 37 /2 and 1 = 57 /4), where a von Mises distribution (equivalent of a Gaussian,
on a circle) was centered, and subsequently used in the simulations as the source for
generating particles. The choice of these locations was significant for the visual appearance
of the final shape of the clusters, square for = 37 /2 (270°) and oblique for i« = 57 /4 (225°)
(Fig. 38), resulting from the fact that the square grid was used in the simulations (see the
schematic illustration on Figure 39). More precisely, for low «,, values, if an uniform random
position is used, the resultant shape is a square (Fig. 25); in the case of the first location,

the resultant shape is the side of the square; and the vertex of the square is obtained for

the second location.
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Figure 37: Phase diagram of the multifractal parameter o, determined from the aggregates
contour fluctuations in function of different “surface tension” (c,,) and fluxes (p; and py).

In turn, wider shapes and more developed secondary branches (in the case of high
“surface tensions”) are observed for lower « values (i.e. lower concentration of particles),
as a strategy to find more resources necessary for the growth process. Such behavior is
observed in specimens of stony corals (Fig. 40), where specimens that grew in a sheltered
site present more open branched structure than those species that are collected from an
exposed site (MERKS et al., 2003). However, the particle concentration per se does not
significantly change the shape of the aggregates, similar to the effect of the flux magnitude.
Perhaps, a combination of both the directional bias in movement and the concentrated

particle source could generate more irregular shapes.
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Figure 38: Morphological diagram of clusters with 50,000 particles aggregated under dif-
ferent “surface tension” («,,) and particles concentration (r), considering the two central
location () of the particle releasing distribution.

u=3n/2

Figure 39: Schematic representation of the location parameter (i) effect on the cluster
growth in response of a square grid. x is the concentration parameter of the von Mises
distribution used to choose the site of the circle which the particle is released.
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Figure 40: Growth forms of the stony coral Pocillopora damicornis (from Kaandorp et al,
1996; original from Veron and Pichon, 1976). Form (A) originates from an exposed site, (B)
from a semiprotected site, and (C) from a site sheltered from water movement.

5.3.3.2 Multifractal properties

Concerning the cluster contour characteristics, the multifractal parameters present slight
differences among locations and particle concentrations (Fig. 41). In contrast with the flux,
oo and A« do not depend on the two particle distribution parameters, showing similar beha-
vior of that for scenario 1, where a monotonic decrease was observed for o as a function of
ay, till saturation is reached for high “surface tensions” (Fig. 41A and B). Also, the maximum
of ag at o, = 0.07 (the critical “surface tension”) was observed for all parameter location
and particle concentrations (Fig. 41C and D) . However, the concentration affect the cluster
contour fluctuation that growth at low oy (< 0.05) in minor scales, i.e. for negative ¢ (Fig.
41E and F). In other words, the more spread the cluster becomes, the more irregularities in

small scales it presents.
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Figure 41: Phase diagram of the four multifractal parameters determined from the aggrega-
tes contour fluctuations in function of different “surface tension” (c,,) and the concentration
parameter (k) for the two angular location (x = 27 and ¢ = 7/4). (A and B) «y, position
of the maximum of f(a), corresponding to ¢ = 0; (C and D) A«, the width of the spec-
trum, estimate of the range of & where fa(«) > 0, obtained by Aa = e — Qmin (E
and F) Aa—, the contribution of the negative part of ¢ in the spectrum range, estimated by
Aa— = Qpmaez — @p; and (G and H) Aa+, the contribution of the positive part of ¢ in the
range of the spectrum, estimated by Aa+ = a9 — Qmin.
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6 General Conclusions

The multifractal analysis of closed contours through “The Traveling Observer” MF-DFA
has shown to be very promising. The results presented here indicate that this novel ap-
proach can capture intrinsic characteristics of the growth process hidden in the contour
fluctuations, that are reflected by the multifractal parameters. In fact, these parameters can
be used as shape descriptors in classification problems, as an interface to other traditional
quantitative methods employed for shape analysis (see. chapter 4). However, their interpre-
tation goes far beyond simple shape classification. For instance, in chapter 3, multifractal
parameters were related to alteration of metabolic rate between reproduction and somatic
growth of fishes, reflected in the otolith growth process, and they can be used to determine
length and age of first maturity. In turn, the parameter behavior observed in chapter 5 de-
monstrates strong resemblance with classical phase transitions, showing properties not yet

observed for a microscopic aggregation model.

The use of the contour radius normalized by the zero-th harmonic to extract the fluc-
tuations appears to be one of the most important advantages of this new method. First,
this characteristic makes the results invariant to size. This represents an important feature
when shape classification is being conducted, and it has turned capable of removing the

finite-size effects on the multifractal spectrum of DLA, previously observed in other works.

Furthermore, this procedure takes into account only the “active zone” of growing, and
works as a measure of growth probability of this zone. This characteristics can be used to
model the variation of a boundary of a natural structure during its growth, as a picture of

the boundary condition (such as “surface tension” and flux) at a certain time (such as fish
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age) or locality, reflected on the multifractal parameters. Possibly, multifractal parameters
may be used as input ingredients for future microscopic growth otolith models, reflecting the

degree of heterogeneity of aggregation probability.

The morphological results presented in chapter 5 suggest that the use of the generali-
zed DLA model, in combination with multifractal analysis of the contour fluctuations, repre-
sents a potential approach to model the growth of otoliths. In the present work, applying only
simple modifications on “surface tension”, flux and particle concentration, artificial shaped-
otoliths were obtained, with a stronger contribution of flux and “surface tension”. However,
during otolith biomineralization, there are other genetic and environmental mechanisms that
could control the otolith morphogenesis and, hence, the isotropy or anisotropy of calcium
aggregation around the otolith perimeter. These mechanisms include the shape of the inner
ear (GAULDIE, 2000), proteins (PAYAN et al., 1999; SOLLNER et al., 2003), and discontinuities
of the otolith growth provoked by stimulus to the macula due to environmental conditions
(LECOMTE-FINIGER, 1999; CARDINALE; DOERING-ARJES; GANGNON, 2004). Due to the cha-
racteristic of being easily generalized, these factors could be simulated as an extension of
the generalized DLA model described here, allowing the measurement of individual factor

contributions.

Because our current approach is somewhat general, it could be applied to contour stu-
dies of other natural structures. For example, the multifractality of mineral particles has
been assessed only in terms of their spatial arrangement in soil (POSADAS et al., 2003; XIE et
al., 2010), and such a shape characterization would also be important in the classification
of different types of sediment (DROLON; DRUAUX; FAURE, 2000) and ash particles (DELLINO;
LIOTINO, 2002). How the multifractal properties of contour fluctuations behave during parti-
cle formation, and how they relate to geological processes, is still not well understood, and
the current “travelling observer” MF-DFA approach may prove useful for the elucidation of

such phenomena.
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Appendix A

6.1 The von Mises Distribution

The von Mises distribution is analogue to a normal distribution on the line (FORBES et
al.,, 2011). Here, x is a circular random variate, with range 0 < = < 27. The parameters of
this distribution are: the concentration (scale) parameter x > 0 and the location parameter
(mean direction and mode) 0 < p < 27, analogous to the mean and variance in the normal

distribution. Its distribution function is
> sin|)(x —
F(x|p, k) = 2rIy(r)] " {xlo(m) +2) fj(m)M} (6.1)
j=0

where [;(k) > % is the Bessel function of order ¢; for order t = 0, Io(k) >, (5% /[2%(i!)?].

Then, the probability density function (pdf) is defined as

eﬁcos(a}—u)

fzlp, k) = S lo(n)

(6.2)

A uniform distribution of a rectangular variate between a and b is obtained in the limit of
small x:

limy_of (x|, k) = U(x), (6.3)

with . = 0, k = 27, and pdf 1/(27). The von Mises variate tends to a normal variate in the

limit of large «:

—(z—p)2?
eap |5

an—>oof(x|:u7 H) = Wa (64)
with n =0,and o = 1/k

The maximum likelihood estimates of the parameters 1 and « are, respectively, £(|z) =

tan™' (37, sinz;/ Y, cosx;), and é([l(/@)/fo(mﬂx) = % [(ZL cos:z:i)2 >, sinmi)Q i
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6.2 The von Mises Random Angle Generator
For the simulation performed in chapter 5, random angles from a von Mises distribution

were obtained basing on the Matlab code included in a Matlab Toolbox for Circular Statistics

(BERENS, 2009). The C code version is the follow:

double fi;

vonmise (&f1i);
int vonmise(double *random)q
int 1, sign;

double a,b,r;

double ul3]l,z,f,c,x,y;

v
Il

1 + sqrt ((1+4xk*k));

lop
Il

(a - sqrt(2xa))/(2%k);

(1 + bxb)/(2%b);

H
Il

*random=0;

while (1){
for(i=0;i<3;i++){

ulil=(double)UNI/RMAX;

}

z = cos(PIxul0]);
f = (1+rxz)/(r+2);
c = kx(r-f);

if(ul1l< (¢ * (2-¢)) || ' (log(c)-log(ul1]l)+1-c<0))break;



}

if ((u[2]-0.5)>0)sign=1;

else if ((u[2]-0.5)<0)sign=-1;

else sign=0;

*random = mi+sign*acos(f);
y=sin(*random) ;

x=cos (*random) ;
*random=atan2(y,x) ;

return 1;

}
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