
UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO

PRÓ-REITORIA DE PESQUISA E PÓS-GRADUAÇÃO

DEPARTAMENTO DE ESTATÍSTICA E INFORMÁTICA

PROGRAMA DE PÓS–GRADUAÇÃO EM BIOMETRIA E ESTATÍSTICA

APLICADA

LUCIANO SERAFIM DE SOUZA

LACKADAISICAL QUANTUM WALK ANALYSES
WITH PARTIAL PHASE INVERSION PROPOSAL

RECIFE – PE

2024

LUCIANO SERAFIM DE SOUZA

LACKADAISICAL QUANTUM WALK ANALYSES
WITH PARTIAL PHASE INVERSION PROPOSAL

A thesis submitted to the Coordination of the

Graduate Program in Biometrics and Applied

Statistics of the Department of Statistics

and Informatics - DEINFO - Federal Rural

University of Pernambuco, as part of the

requirements for obtaining a Ph.D.

ADVISOR: Prof. Dr. Tiago A. E. Ferreira

RECIFE – PE

2024

Dados Internacionais de Catalogação na Publicação
Sistema Integrado de Bibliotecas da UFRPE
Bibliotecário(a): Suely Manzi ‒ CRB-4 809

S719l Souza, Luciano Serafim de.
Lackadaisical quantum walk analyses with Partial Phase

Inversion Proposal / Luciano Serafim de Souza. – Recife,
2024.

114 f.; il.

Orientador(a): Tiago Alessandro Espinola Ferreira.

Tese (Doutorado) ‒ Universidade Federal Rural de
Pernambuco, Programa de Pós-Graduação em Biometria e
Estatística Aplicada, Recife, BR-PE, 2024.

Inclui referências e anexo(s).

1. Computação quântica. 2. Redes Neurais
(Computação) . 3. Inteligência artificial. 4. Algoritmos
computacionais 5. Algoritmos e estruturas de dados . I.
Ferreira, Tiago Alessandro Espinola, orient. II. Título

CDD 519.5

LUCIANO SERAFIM DE SOUZA

LACKADAISICAL QUANTUM WALK ANALYSES
WITH PARTIAL PHASE INVERSION PROPOSAL

A thesis submitted to the Coordination of the

Graduate Program in Biometrics and Applied

Statistics of the Department of Statistics

and Informatics - DEINFO - Federal Rural

University of Pernambuco, as part of the

requirements for obtaining a Ph.D.

Approved on: August 27, 2024.

EXAMINATION BOARD

Prof. Dr. Tiago A. E. Ferreira (Advisor)
Universidade Federal Rual de Pernambuco - UFRPE

Departamento de Informática

Wilson Rosa de Oliveira Junior
Universidade Federal Rural de Pernambuco - UFRPE

Departamento de Informática

Franklin de Lima Marquezino
Universidade Federal do Rio de Janeiro - UFRJ
Laboratório Nacional de Computação Científica

Adenilton José da Silva
Universidade Federal de Pernambuco - UFPE

Centro de Informática

José Ferraz de Moura Nunes Filho
Universidade Federal Rural de Pernambuco - UFRPE

Departamento de Física

Aos meus filhos, esposa, pais e irmãos.

Agradecimentos

Agradeço imensamente a Deus pela criação e por cuidar de minha família durante

todo este tempo que estive ausente, por ser nas horas de desânimo e dificuldade a minha

esperança e fortaleza. Agradeço aos meus pais, Josefa (In memoriam) e Mario (In

memoriam) e minha avó materna, Lurdes (In memoriam), por todo amor e apoio que

foi dado a mim em vida. Aos meus irmãos Alexandre (In memoriam), Mário e Jônatas

e irmãs Alexandra, Ana Paula e Luciana e os seus familiares por fazerem parte da minha

vida.

Agradeço com todo meu amor à minha esposa, Maria, por estar sempre ao meu lado,

dando forças e segurança. Por ter cuidado de nossos filhos enquanto estive longe para que

eu pudesse buscar a realização de mais este sonho. Estas poucas palavras são incapazes de

expressar o tamanho e a dimensão de toda gratidão que tenho a você. Agradeço aos meus

filhos Ana e Lucas que abdicaram da minha presença, sendo bons filhos, compreensivos e

amorosos e vendo em mim além do que sou e mereço. Esta conquista não é apenas minha

mas de todos vocês.

Agradeço ao Professor Dr. Tiago A. E. Ferreira, pela orientação. Pela compreensão,

paciência, amizade, por toda ajuda e respeito. Por ser um exemplo. Por ter contribuído

para que eu me tornasse uma pessoa melhor do que era antes. Ao meu amigo Jonathan

pelo companheirismo e por toda contribuição. Ao Professor Dr. Henrique C. T. Santos

pela sua amizade e contribuição.

Agradeço a Universidade Federal Rural de Pernambuco, ao Programa de Pós

Graduação em Biometria e Estatística Aplicada e a todos da coordenação, do corpo

docente, técnicos e corpo discente.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento

de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

Com a sabedoria se edifica a casa, e com a

inteligência ela se estabelece.

(Provérbios 24:3)

Abstract

Quantum walks have been a theme of great interest in quantum computing. The

development of quantum search algorithms represents the main application of these

quantum walks. Based on quantum walks, these search algorithms have shown promising

results, providing efficient solutions to complex problems. However, some theoretical and

practical challenges still need to be overcome. This thesis comprises four scientific articles

that use quantum walks, defined in a discrete-time space, as search algorithms. Initially,

we applied a quantum walk on a complete graph to develop a quantum search procedure

capable of finding a set of synaptic weights that train a classical artificial neural network.

Some advantages of using quantum walk as a search procedure for a set of synaptic weights

can be highlighted: avoiding stagnation in local minima, knowing in advance the number

of iterations required to obtain a solution, and guaranteeing a valid solution by the end of

the procedure. However, to apply the quantum walk on the complete graph to search for

synaptic weights, it is necessary to map its vertices onto an n-dimensional grid to define

their locations. This is because, by definition, in a quantum walk on a complete graph, the

vertices are indistinguishable, incurring an additional cost. To reduce this cost, we decided

to analyze the lackadaisical quantum walk on the hypercube, as it can be reduced to a walk

on a line, thereby decreasing its complexity. Since the goal is to search for multiple weights

and because the lackadaisical quantum walk depends on a weight value for the self-loop, we

proposed an ideal weight value for searching multiple vertices, achieving maximum success

probabilities close to 1. Furthermore, the results show that if the vertices constituting the

solution are also adjacent, the maximum success probability is compromised. Observing

this behavior regarding the adjacency of solutions, we investigated the use of multiple

self-loops at each vertex of the hypercube and proposed a new search algorithm based

on the lackadaisical quantum walk with partial phase inversion. Initially, we applied this

proposal to search for non-adjacent vertices. With this new approach, we also proposed

two new weights, achieving maximum success probabilities close to 1. Subsequently, we

applied the algorithm in two scenarios: a search for adjacent and non-adjacent vertices,

and a search exclusively for adjacent vertices. We achieved maximum success probabilities

close to 1 even in cases where the solution vertices were adjacent.

Keywords: Quantum Computing. Artificial Neural Networks Training. Quantum Walk.

Quantum Search Algorithm. Lackadaisical Quantum Walk. Multiple Self-loops. Partial

Phase Inversion. Adjacent Marked Vertices

Resumo

As caminhadas quânticas têm sido um tema de muito interesse na computação quântica.

O desenvolvimento de algoritmos quânticos de busca representa a principal aplicação

dessas caminhadas quânticas. Com base em caminhadas quânticas, esses algoritmos de

busca têm mostrado resultados promissores, fornecendo soluções eficientes para problemas

complexos. Contudo, alguns desafios teóricos e práticos ainda precisam ser superados. Esta

tese compreende quatro artigos científicos que usam caminhadas quânticas, definidas em

um espaço de tempo discreto, como algoritmos de busca. Inicialmente, aplicamos uma

caminhada quântica em um grafo completo para desenvolver um procedimento quântico

de busca capaz de encontrar um conjunto de pesos sinápticos que treinam uma rede

neural artificial clássica. Algumas vantagens da utilização das caminhadas quânticas como

procedimento de busca para um conjunto de pesos sinápticos podem ser destacadas: evitar

estagnação em mínimos locais, o conhecimento prévio do número de iterações necessárias

para obter uma solução, e garantir uma solução válida ao final do procedimento. No entanto,

para aplicar a caminhada quântica em um grafo completo com o objetivo de buscar pesos

sinápticos, é necessário mapear seus vértices em uma grade n-dimensional para definir

suas localizações. Isso ocorre porque, por definição, em uma caminhada quântica no grafo

completo, os vértices são indistinguíveis, acarretando um custo adicional. Para reduzir este

custo, decidimos analisar a caminhada quântica lackadaisical no hipercubo, pois ela pode

ser reduzida a uma caminhada em uma reta, diminuindo assim sua complexidade. Como o

objetivo é a busca por múltiplos pesos e, devido à dependência da caminhada quântica

lackadaisical de um valor de peso para o self-loop, propusemos um valor de peso ideal

para buscar múltiplos vértices, alcançando probabilidades máximas de sucesso próximas

de 1. Além disso, os resultados mostram que, caso os vértices que constituem a solução

sejam adjacentes, a probabilidade máxima de sucesso é comprometida. Observando esse

comportamento em relação à adjacência das soluções, investigamos o uso de múltiplos

self-loops em cada vértice do hipercubo e propusemos um novo algoritmo de busca

baseado na caminhada quântica lackadaisical com inversão parcial de fase. Inicialmente,

aplicamos essa proposta na busca por vértices não adjacentes. Com essa nova abordagem,

também propusemos dois novos pesos, alcançando probabilidades máximas de sucesso

próximas de 1. Posteriormente, aplicamos o algoritmo em dois cenários: uma busca por

vértices adjacentes e não adjacentes, e uma busca exclusivamente por vértices adjacentes.

Alcançamos probabilidades máximas de sucesso próximas de 1, mesmo em casos em que

os vértices da solução eram adjacentes.

Palavras-chave: Computação quântica. Treinamento em Redes Neurais Artificiais.

Caminhada Quântica. Algoritmo de Busca Quântica. Caminhada Quântica Lackadaisical.

Múltiplos self-loops. Inversão de Fase Parcial. Vértices Marcados Adjacentes

Summary

1 Introduction . 13

2 Classical Artificial Neural Network Training Using Quantum Walks as

a Search Procedure . 18

3 Lackadaisical Quantum Walk in the Hypercube to Search for Multiple

Marked Vertices . 38

4 Multi-self-loop Lackadaisical Quantum Walk with Partial Phase Inversion 51

5 Search for Multiple Adjacent Marked Vertices on the Hypercube by

Quantum Walk with Partial Phase Inversion 71

6 General Conclusions . 85

References . 89

ANNEXES . 91

13

Introduction

14

Introduced by Aharonov, Davidovich and Zagury (1993), quantum walks are one

of the main tools for the development of quantum algorithms. We can highlight some

works that summarize how quantum walks have evolved since their initial proposal. The

first work is considered pioneering. As proposed by Shenvi, Kempe and Whaley (2003),

a quantum search algorithm was developed based on a quantum walk on the hypercube

similar to Grover’s search algorithm to search a marked vertex. Both algorithms start in

the equal superposition state, make use of Grover’s diffusion operator, can be seen as a

rotation in a two-dimensional subspace, use an oracle that marks the target state with a

phase of −1, and have a time of execution of O(
√
N).

However, there are two important differences. First, Grover’s algorithm is usually

mapped onto a two-dimensional space, where each point in the search space represents

a possible solution. The quantum walk-based search algorithm can be mapped only

approximately in a two-dimensional subspace because of the nature of the search space due

to the use of the hypercube, i.e., the quantum walk algorithm proposed by Shenvi, Kempe

and Whaley (2003) needs a more complex representation not can be mapped directly into

a two-dimensional space. Second, the final state of the search algorithm based on quantum

walking in the hypercube is not exactly the pure tagged state as it is in Grover’s algorithm,

it is a linear combination of states that is mainly composed of the marked state but also

has small contributions from its nearest neighbors.

Another critical difference is the locality of the unitary transformations used during

the algorithm, i.e., the coin operator shifts amplitude only between nearest neighbors, this

means that the coin operator changes amplitude only in n-dimensional coin space. Therefore,

all operations in an iteration are local. In Grover’s algorithm, the reflection operator used

is highly non-local. The use of Grover’s diffusion operator is another difference between the

two algorithms. In Grover’s algorithm, this operator is applied to every two-dimensional

search space, however, in the quantum walk algorithm, it is used as the quantum coin and

acts only in the n-dimensional coin space. In practical terms, this can be advantageous in

certain physical implementations of quantum computers. In general, according to Shenvi,

Kempe and Whaley (2003), a similar methodology can be applied to any regular graph.

The second work presents the proposal of the quantum walk developed by Wong

(2015) called Lackadaisical Quantum Walk based on the lazy random walk. The lazy

random walk is a type of classical random walk where the particle has a certain probability

15

of staying at the current vertex instead of moving to an adjacent vertex. It is often used

to model phenomena in different fields of knowledge, such as physics, mathematics, and

computer science. Similarly, in the lackadaisical quantum walk, m > 0 self-loops are added

to each vertex of a complete graph to search for one marked vertex, where, m belongs

to the integers. Its effects were investigated in Grover’s algorithm when elaborated as a

search. This approach can make the quantum walk have a more stable behavior, improving

the search efficiency. Later, in a third work, Wong (2017) proposed a modification in

this algorithm causing the number of self-loops to be reduced to m = 1 with non-integer

weight l. This search algorithm has been applied to a large variety of graphs (WONG,

2015; WONG, 2017; RHODES; WONG, 2020; SOUZA; CARVALHO; FERREIRA, 2021b;

RHODES; WONG, 2019; CARVALHO et al., 2023; ZHANG; XIANG; SUN, 2018; SAHA

et al., 2022; TANAKA; SABRI; PORTUGAL, 2022; QU et al., 2022).

Both search algorithms were also applied to problems involving the training of

classical neural networks. Silva (2014) proposed an alternative quantum approach to the

classical approach in training a perceptron. In this approach, the adaptation of the synaptic

weights is done through the Grover Search Algorithm promoting an upper limit for the

perceptron convergence. Souza, Carvalho and Ferreira (2021a) proposed a computational

procedure that applies a lackadaisical quantum walk as a complete graph search algorithm

to find all synaptic weights of a classical artificial neural network. This work is presented

in Chapter and largely represents the motivation that guided all the rest of the research

activities developed in this thesis work.

This approach used the search algorithm proposed by Wong (2015) to build a

quantum procedure to train classical artificial neural networks. Since the lackadaisical

quantum walk on the complete graph considers two types of vertices, a as a solution and b

as a non-solution, these vertices are indistinguishable. Therefore, we consider mapping

each vertex of the complete graph to a vertex of an n-dimensional grid. In this way, the

possible sets of weights that train the classical neural network are mapped onto the states

of the quantum system. Although the proposed methodology is theoretical, the procedure

guarantees the training of the neural network with high probability.

The quantum walk in the complete graph used in the procedure, in addition to

needing a structure to map the set of weights, also depends on a change of basis, which

causes an additional cost. Therefore, with the goal of optimizing the procedure, we decided

16

to study other structures that represented the location of the walker in the search space

without the need for additional mapping and that did not depend on a base change.

According to Shenvi, Kempe and Whaley (2003), the hypercube quantum walk can be

reduced to a line walk, therefore we decided to investigate the lackadaisical quantum walk

on the hypercube. However, when adding weighted self-loops to the quantum walk, an

immediate concern arises, defining what is the optimal value for the l weight.

Several works investigated weight values for the most varied structures (RHODES;

WONG, 2020; CARVALHO et al., 2021; NAHIMOVS; SANTOS, 2021). Rhodes and Wong

(2020) proposed an ideal weight for all transitive graphs with a single marked vertex so

that the ideal weight of the self-loop is equal to l = d/N , where, d represents the degree of

the loopless graph divided by the number total number of vertices N . In the investigation

of the lackadaisical quantum walk on the hypercube we defined an ideal weight to search

for multiple marked vertices. As noted previously, the final state of the search algorithm

based on the quantum walk in the hypercube is not exactly the marked pure state as it

is in Grover’s algorithm, however, with the weight l = (d/N) · k, where, k represents the

number of marked vertices it was possible to amplify the probability amplitudes to values

close to 1 for the case where all marked vertices are non-adjacent.

Other results found in this work indicate that, if the marked vertices as a solution

are adjacent, the probability of success is compromised. In this case, two scenarios were

investigated. The first scenario only searched adjacent marked vertices. As the number of

marked vertices k increased, the probability of success also increased, however, it reached

a maximum probability of success of 0.945. The second scenario searched for adjacent

and non-adjacent marked vertices. Again, the probability of success is proportional to

the number of marked vertices and reached a maximum of 0.976. From these results, we

decided to revisit the addition of multiple self-loops at each vertex in the hypercube and

partial phase inversion in a try to improve the chances of success in cases where the set of

marked vertices contains adjacent vertices. For this, we propose a modification in Grover’s

oracle so that the edges that represent the self-loops are considered individually. We named

this approach Multi-self-loop Lackadaisical Quantum Walk with Partial Phase Inversion –

MSLQW - PPI.

Initially, we investigated the application of MSLQW - PPI to search multiple

non-adjacent marked vertices in order to prevent any interference caused when there are

17

adjacent marked vertices. Using the l weights proposed by Rhodes and Wong (2020) and

Souza, Carvalho and Ferreira (2021b) for the self-loops and a distribution strategy that

divides the weight l/m, where 1 ⩽ m ⩽ 30 we apply the oracle that marks the entire

destination state with a phase of −1 and we observed that the result was similar when

using a single weighted self-loop at each vertex. However, as the self-loops m > 1 are

redundant we decided to investigate the inversion of the set of self-loops partially.

Preliminary results indicate that the phase inversion of a single self-loop is sufficient

to achieve maximum success probabilities analogous to those presented by Rhodes and

Wong (2020) and Souza, Carvalho and Ferreira (2021b). Thus, we propose two new weights

by adding an exponent in nα, where, α = 2. With this, we can improve the maximum

probability of success to values close to 1 for the weight proposed by Rhodes and Wong

(2020). It was also possible to maintain the maximum probability of success with the weight

proposed by Souza, Carvalho and Ferreira (2021b) at values close to 1 using m = s · n
self-loops at each vertex, where s is the self-loops with their phase inverted and n is the

degree of hypercube. We also investigate the application of MSLQW – PPI to search for

multiple adjacent marked vertices. The results show that it was possible to improve the

maximum probability of success in cases where there are adjacent marked vertices to values

close to 1 with the use of the two new weight values proposed for the MSLQW - PPI.

In summary, this document is divided into six chapters as follows. Chapter 2

describes the proposal of a computational procedure that uses a quantum walk in the

complete graph for the training of artificial neural networks. In Chapter 3 we present the

application of lackadaisical quantum walk on the hypercube to search for multiple solutions.

Chapter 4 presents the Multi-self-loop Lackadaisical Quantum Walk With Partial Phase

Inversion proposal. Chapter 5 shows the application of MSLQW - PPI to search multiple

adjacent marked vertices on the hypercube. Chapter 6 presents the general conclusions

about the results, contributions, and implications for the development of new quantum

search algorithms based on quantum walks.

18

Classical Artificial Neural Network
Training Using Quantum Walks as a

Search Procedure
Article published in IEEE Transactions on Computers

DOI: 10.1109/TC.2021.3051559

A preprint can be found at: https://arxiv.org/pdf/2108.12448

https://doi.org/10.1109/TC.2021.3051559
https://arxiv.org/pdf/2108.12448

CLASSICAL ARTIFICIAL NEURAL NETWORK TRAINING USING
QUANTUM WALKS AS A SEARCH PROCEDURE

A PREPRINT

Luciano S. de Souza∗

Departamento de Estatística e Informática
Universidade Federal Rural de Pernambuco

Recife, Brasil
lucianoserafimdesouza@gmail.com

Jonathan H. A. de Carvalho
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brasil

hcarvalho.jon@gmail.com

Tiago A. E. Ferreira
Departamento de Estatística e Informática

Universidade Federal Rural de Pernambuco
Recife, Brasil

tiago.espinola@ufrpe.br

November 18, 2024

ABSTRACT

This paper proposes a computational procedure that applies a quantum algorithm to train classical
artificial neural networks. The goal of the procedure is to apply quantum walk as a search algorithm
in a complete graph to find all synaptic weights of a classical artificial neural network. Each vertex
of this complete graph represents a possible synaptic weight set in the w-dimensional search space,
where w is the number of weights of the neural network. To know the number of iterations required
a priori to obtain the solutions is one of the main advantages of the procedure. Another advantage
is that the proposed method does not stagnate in local minimums. Thus, it is possible to use the
quantum walk search procedure as an alternative to the backpropagation algorithm. The proposed
method was employed for a XOR problem to prove the proposed concept. To solve this problem,
the proposed method trained a classical artificial neural network with nine weights. However, the
procedure can find solutions for any number of dimensions. The results achieved demonstrate the
viability of the proposal, contributing to machine learning and quantum computing researches.

Keywords Artificial Neural Networks Training · Quantum Computing · Quantum Walk · Search
Algorithm.

1 Introduction

The need for increased computing power and the miniaturization of components at scales where quantum effects cannot
be ignored [Powell, 2008] support the idea that quantum physics can redefine a new frontier for computing problems by
taking an essential role in the computational race [Singh and Singh, 2016]. Quantum effects can provide computational
gains and algorithms that are mostly more efficient than their classical counterparts for many problems. Quantum
computing seeks through the use of aspects of quantum mechanics to expand computational horizons [Lloyd et al.,
2013, Yanofsky et al., 2008]. An example of the computational power of quantum computing is performing a search
for elements in a disordered database in just O(

√
N) [Grover, 1996], where N is the size of the database. The gain is

quadratically faster than its classical analog.
∗95, R. Manuel de Medeiros, 35 - Dois Irmãos, Recife - PE.

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

In this perspective, efforts are employed in the search for more efficient algorithms. In particular, there is a branch
of research called quantum machine learning (QML) [Wittek, 2014], where machine learning methods and artificial
intelligence are integrated into the world of quantum computing in the hope to find more efficient procedures than
classical algorithms. According to Dunjko et al. [2016], the quantum processing of information from quantum ma-
chine learning is interactively configured in two parts called the agent-environment. These parts are grouped into four
categories: CC, CQ, QC, and QQ, where C means Classical, Q means Quantum. The first letter is referent to the
agent and the second to the environment. CC encompasses classical machine learning. CQ analyzes how classical
learning techniques can help in quantum tasks. QC represents the quantum variants of classical learning algorithms
facing a classical environment, where this work is classified. QQ is the quantum systems world.

Papers grouped within the QC category are developed to improve classical procedures with the quantum information
processing (QIP) paradigm. Aïmeur et al. [2013] showed that it is possible to accelerate unsupervised learning algo-
rithms by quantizing some of their subroutines. Zheng et al. [2018] designed an algorithm to train a perceptron using
Grover’s Algorithm [Grover, 1996]. Schuld et al. [2015] developed a procedure that uses a quantum phase estimation
algorithm in the classical neural network training process. Date et al. [2019] presents a Classical-Quantum Hybrid
Approach for training unsupervised probabilistic machine learning models.

Machine learning (ML) studies techniques to give machines the ability to learn from past experiences. Its core tasks
include classification or regression in supervised learning and density estimation or clustering in unsupervised learning,
for example. Usually, in the ML context, the training of a machine is performed using a learning algorithm that uses as
input a training data set [Aïmeur et al., 2006] to extract information, adjust its parameters, and solve a given problem.

One of the ML techniques widely employed for many problems is the Artificial Neural Network (ANN), wherein
the classical (non-quantum) world is a Classical ANN. Classical ANNs are one of the best-known classifiers and
predictors. Classical ANNs have proven to be very competitive in solving real-world problems compared to other
conventional data analysis methodologies [Prieto et al., 2016]. Its optimization is observed from various perspectives,
but in general, classical ANN training is performed mainly using a gradient descent algorithm. However, optimization
methods based on the descending gradient algorithm have limitations. Aspects such as weight initialization, network
architecture, activation functions, meta parameters, and learning environment can influence the optimization process
[Haykin, 2001, Ojha et al., 2017]. In this way, the training algorithm may not obtain a set of weights that train the
neural network, staying stagnated at local minimums.

Therefore, a neural network’s training algorithm based on the descending gradient method can be seen as a search
problem and seeks to minimize an error function. This ANN training is a search problem for an appropriate weight
configuration that allows learning the network [Biamonte et al., 2017]. On the other hand, in the quantum computing
branch, some search algorithms are more efficient than their classical analogue. For example, Grover’s quantum search
algorithm [Grover, 1996] and quantum walks [Wong, 2015, Nahimovs and Rivosh, 2015, Wong, 2018, Lovett et al.,
2019, Nahimovs, 2019]. In this perspective, quantum search algorithms have already been used for the training process
of classical ANN [Schuld et al., 2015, Zheng et al., 2018].

Based on the incipient work developed by Souza et al. [2019] with extreme learning machines, this article generalizes
and extends the quantum walk proposal to train a classical ANN. Here, a full graph lackadaisical quantum walk
algorithm [Wong, 2015, 2018, Nahimovs, 2019] is applied as a search method to find all the synaptic weights that
optimize the learning procedure of a classical ANN.

This paper is organized as follows. Section 2 introduces some concepts of the one-dimensional and the generalization
for n-dimensional quantum walks, and it also presents the quantum walk on a complete graph. Section 3, it shows the
computational procedure used in this paper. Section 4, it shows the experiments performed. Section 5 discusses the
results obtained. Finally, Section 6 is the conclusion of the work.

2 Quantum Walk

The simplest model of the classical random walk can be described by a particle’s classical movement in a straight line
[Portugal, 2013]. Let the s the particle probability of going to the right. Let (1 − s) the probability of going to left.
Therefore, the direction of the particle is conditioned by tossing a coin. This process is probabilistic, so it is impossible
to know with certainty where the particle will be at any given time. However, it is possible to calculate the probability
p that particle is at a point n at time t, as shown in Equation 1 for the case s = 1/2.

p(t, n) ≃ 2√
2πt

e−
n2

2t (1)

2

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

The quantum walks generalize the concept of a classical random walk, i.e., the quantum mechanical counterpart of
classical random walks [Venegas-Andraca, 2012]. It is assuming a walker represented by a normalized vector in
Hilbert space. The quantum walk evolves in the Hilbert space HM ⊗ HP , where HM is the coin space that controls
the walker’s movement, andHP defines the position of the walker [Portugal, 2013].

Suppose the quantum walk takes place in a one-dimensional space. In this case, the coin space needs two degrees of
freedom. Therefore, the coin space HM is generated by the computational base {|0〉 , |1〉}. A qubit can represent this
quantum information. The possible states that one qubit can assume are represented by the state vectors |0〉 and |1〉
described in Equations 2 and 3, respectively.

|0〉 =
[
1

0

]
(2)

and

|1〉 =
[
0

1

]
(3)

Walker spaceHP is generated by base {|n〉 : n ∈ Z}which represents all integers of one-dimensional space. Consider
an operator S that, when applied to the system formed here by a coin and a walker, will shift the position of the
individual to |n+ 1〉 or |n− 1〉 depending on the state of the coin according to Equation 4.

S |0〉 |n〉 = |0〉 |n+ 1〉

S |1〉 |n〉 = |1〉 |n− 1〉
(4)

A unitary transformation describes the evolution of a closed quantum system. This evolution depends on the applica-
tion of an operator U shown in Equation 5 to the system over time [Nielsen and Chuang, 2002],

U = S(H ⊗ I) (5)
where H is the Hadamard operator and I is the identity.

For an operator U of a quantum system to be unitary, it must satisfy the condition described in Equation 6, where U †

is the adjunct of U . This condition is necessary for the norm of the vectors to be maintained, for this we must calculate
‖ u ‖ =

√
〈u | u〉, where 〈u | u〉 is the inner product.

UU † = U †U = I (6)

The evolution of the quantum walk system is performed by the Equation 7.

|Ψ(t)〉 = U t |Ψ(0)〉 (7)
where |Ψ(0)〉 is the initial state of the quantum system.

Consider the initial state of the quantum system given by the Equations 8 and 9. Asymmetrical and symmetrical state,
respectively. We can obtain the asymmetrical and symmetrical probability distributions after one hundred applications
of U operator, shown in Figures 1 and 2. Unlike the classical case, where the distribution is an origin-centered
Gaussian, for both case asymmetrical and symmetrical, the quantum walk has a large spread with an interval of
−t/
√
2 to t/

√
2.

|Ψ(0)〉 = |0〉 |n = 0〉 (8)

|Ψ(0)〉 = |0〉 − i |1〉√
2

|n = 0〉 (9)

For example, if the quantum walk starts in the initial state described in Equation 8. Apply the Hadamard operator
H as the coin of the quantum walk system and then applies the shift operator S. We have the initial evolution state

3

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Figure 1: Probability distribution of the one-dimensional quantum walk after 100 steps. The initial state is described
by the Equation 8. The points with zero value were ignored.

Figure 2: Probability distribution of the one-dimensional quantum walk after 100 steps. The initial state is described
by the Equation 9. The points with zero value were ignored.

presented in Equation 10 at the end of the first step. The Hadamard operator application in the computational base
vectors generates a superposition state, i.e, one of the most well-known quantum effects that qubits are at the same
time in distinct states.

|Ψ(1)〉 = 1√
2
(|0〉 |1〉+ |1〉 |−1〉) (10)

With the successive application of the evolution operator U described in Equation 5, at the end of the third stage, we
can observe in Equation 11 that the state |Ψ(3)〉 is asymmetrical about the origin. This asymmetry will keep for all
system evolution, as can be observed in Figure 1.

|Ψ(2)〉 = 1

2
(|0〉 |2〉+ (|1〉+ |0〉) |0〉 − |1〉 |−2〉)

|Ψ(3)〉 = 1

2
√
2
(|0〉 |3〉+ (2 |0〉+ |1〉) |1〉

− |0〉 |−1〉+ |1〉 |−3〉)

(11)

4

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

2.1 One-dimensional quantum walk

This section will describe the one-dimensional quantum walk model analytically and recursively. The generic state for
a one-dimensional quantum walk model is described in Equation 12 [Portugal, 2013].

|Ψ(t)〉 =
∞∑

n=−∞
(αn(t) |0〉+ βn(t) |1〉) |n〉 , (12)

where the coefficients αn(t) and βn(t) satisfy the condition described in Equation 13.

∞∑

n=−∞
|αn(t)|2 + |βn(t)|2 = 1 (13)

Applying the operatorH⊗I to state |Ψ(t)〉, we find recursive formulas involving the coefficients α and β in Equations
14 and 15.

αn(t+ 1) =
αn−1(t) + βn−1(t)√

2
(14)

βn(t+ 1) =
αn+1(t)− βn+1(t)√

2
(15)

As already shown in Figures 1 and 2, the quantum walk probability distributions are dependent on the initial state.
Therefore, the initial state of the system can generate a walk with symmetrical or asymmetrical probability distribution
about the origin. The probability distribution can be calculated using the Equation 16.

p(t, n) = |αn(t)|2 + |βn(t)|2 (16)

2.2 n-dimensional quantum walk

It is possible to generalize the concept presented in Section 2.1 to any number of dimensions. Consider the quantum
walk in an infinite n-dimensional grid with the associated Hilbert spaceHM ⊗HP , whoseHP ’s computational base is
{|x, y, . . . , n〉 : x, y, . . . , n ∈ Z}, and the Coin space HM ’s computational basis is {|ix, iy, . . . , in〉 : ix, iy, . . . , in ∈
{0, 1}n}. The generic state for this quantum walk model at time t is presented in Equation 17.

|Ψ(t)〉 =
1∑

ix,iy,...,in=0

∞∑

x,y,...,n=−∞
ψix,iy,...,in;x,y,...,n(t) |ix, iy, . . . , in〉 |x, y, . . . , n〉 (17)

where ψix,iy,...,in;x,y,...,n(t) are complex functions that satisfy the condition shown in Equation 18 for all time t.

1∑

ix,iy,...,in=0

∞∑

x,y,...,n=−∞

∣∣ψix,iy,...,in;x,y,...,n(t)
∣∣2 = 1 (18)

Moreover, it is possible to calculate the distribution of probabilities using Equation 19.

px,y,...,n(t) =

1∑

ix,iy,...,in=0

∣∣ψix,iy,...,in;x,y,...,n(t)
∣∣2 (19)

Applying the standard evolution operator U = S(C ⊗ I) (C is the coin operator) to the generic state described in
Equation 17 and making the expansions, we obtain Equation 20 which is the walker evolution equation [Portugal,
2013].

ψix,iy,...,in;x,y,...,n(t+ 1) =
1∑

jx,jy,...,jn=0

Cix,iy,...,in;jx,jy,··· ,jnψjx,jy,...,jn;x+(−1)ix ,y+(−1)iy ,...,n+(−1)in (t) (20)

5

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Figure 3: Complete graph with N = 7 vertices. The single vertex marked as a is indicated by the double circle shaded.
Adapted from Wong’s work [Wong, 2015]. Grover search with lackadaisical quantum walks.

2.3 Lackadaisical Quantum Walk on Complete Graph

The quantum walks presented in the previous sections are the basis for other techniques that can be used in other
search spaces. One such variation is the quantum walk in a complete graph developed by Wong [2015], represented in
Figure 3.

There are two types of vertex, a and b, marked as a solution and non-solution, respectively. Each one vertex has l
self-loops. This approach considers the walker’s movement into the complete graph to create the states of the new
computational basis.

If the walker is on an a vertex, there are two movement options. It can move to a vertex that is a solution (a → a) or
to a vertex that is not a solution (a → b). Defining the quantum states |a〉 ⊗ |a→ a′〉 and |a〉 ⊗ |a→ b〉. Similarly,
if the walker is on any vertex b. It can move to a vertex that is a solution (b → a) or to a vertex that is not a solution
(b→ b′). Defining the quantum states |b〉 ⊗ |b→ a〉 and |b〉 ⊗ |b→ b′〉.
Note that the states |a〉 or |b〉 represent the graph vertices and |a→ b〉, for example, represents the edges where |a〉
is the walker’s current state and |b〉 is the state to which the walker will move to it. Equation 21 shows the states
|AA〉 , |AB〉 , |BA〉 , and |BB〉 of the new quantum states for the situation where there is only one solution (only one
vertex labeled as a). N is the total number of vertices. Since there is only one solution, k = 1, and the number of
self-loops is greater than zero, l > 0.

|AA〉 = 1√
l
|a〉 ⊗ |a→ a′〉

|AB〉 = 1√
N − 1

∑

b

|a〉 ⊗ |a→ b〉

|BA〉 = 1√
N − 1

∑

b

|b〉 ⊗ |b→ a〉

|BB〉 = 1√
(N − 1)(N + l − 2)

∑

b

∑

b′

|b〉 ⊗ |b→ b′〉

(21)

Equation 22 defines the initial state |Ψ0〉. This state is described as the uniform superposition N−1
∑

x,y |x〉 |x→ y〉
expressed in terms of the states AA,AB,BA and BB.

6

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

|Ψ0〉 = 1√
N(N + l − 1)

(
√
l |AA〉+

√
N − 1 |AB〉

+
√
N − 1 |BA〉+

√
(N − 1)(N + l − 2) |BB〉)

(22)

The lackadaisical quantum walk is accomplished by successive applications of a unitary operator U , defined in
Equation 23 which inverts the sign of solution states |a〉 |a→ x〉 using an oracle and swaps vertices on each edge,
|x〉 |x→ y〉 → |y〉 |y → x〉 as described in Wong [2015].

U =

cos θ − sin θ 0 0

0 0 − cosφ sinφ

− sin θ − cos θ 0 0

0 0 sinφ cosφ

 (23)

where θ is defined such that,

cos θ =
N − l − 1

N + l − 1

and

sin θ =
2
√
l(N − 1)

N + l − 1

and φ is defined such that,

cosφ =
N − l − 3

N + l − 1

and

sinφ =
2
√
N + l − 2

N + l − 1

Thus, the evolution of the system occurs in a four-dimensional subspace, and each state of the new representation is
formed by overlapping vertices and edges [Wong, 2015].

2.3.1 Quantum walk with self-loops for k solutions

The previous section introduced the quantum walk in a complete graph and describes the approach to the case of a
single solution (k = 1) and the number of self-loops l > 0. Now, consider a number of solutions k > 1 and only one
self-loop (l = 1) per vertex.

The solution set has the number k of vertices, and the non-solution set has N − k vertices, where N is the total
number of vertices. We will use the previous idea that considered the walker’s movement to define the states of the
new multiple solutions computational basis.

If the walker is in a vertex a moving to another vertex a′, there will exist k edges of the type |a→ a′〉. If the walker
is in a vertex a moving to a vertex b, there will exist N − k edges of the type |a→ b〉. Similarly, if the walker is in a
vertex b moving to a vertex a, there will exist k edges of the type |b→ a〉. And if walker is in a vertex b moving to
another vertex b′, there will exist N − k edges of the type |b→ b′〉.
The number of vertices marked as solution must be of the order o(N) because if k = O(N), then k = cN (in the limit
of N → ∞ and c is a finite constant). In this last case, the search for one solution could be performed classically in
an efficient way, i.e., in a constant number of guesses [Wong, 2015]. Thus, the new quantum states are redefined in
Equation 24.

7

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

|AA〉 = 1

k

∑

a

∑

a′

|a〉 ⊗ |a→ a′〉

|AB〉 = 1√
k(N − k)

∑

a

∑

b

|a〉 ⊗ |a→ b〉

|BA〉 = 1√
k(N − k)

∑

b

∑

a

|b〉 ⊗ |b→ a〉

|BB〉 = 1

N − k
∑

b

∑

b′

|b〉 ⊗ |b→ b′〉

(24)

The initial state of the system is rewritten, as presented in Equation 25.

|Ψ0〉 =
1

N
(k |AA〉+

√
k(N − k) |AB〉+

√
k(N − k) |BA〉+ (N − k) |BB〉) (25)

A modification to the evolution operator U (Equation 23) is made so that the number of solutions is included in the
definitions of θ and φ [Wong, 2015]. Therefore, θ is redefined according to Equations 26 and 27,

cos θ =
N − 2k − l + 1

N + l − 1
(26)

sin θ =
2
√

(N − k)(k + l − 1)

N + l − 1
(27)

and φ is redefined according to Equations 28 and 29,

cosφ =
N − 2k + l − 1

N + l − 1
(28)

sinφ =
2
√
k(N − k + l − 1)

N + l − 1
(29)

The maximum success probability value is reached after the number of steps t defined in Equation 30 [Wong, 2015].
Success is defined as the measurement of some state |AA〉 or the state |AB〉. Both states represent the set of vertices
marked as a solution.

t =
π√

2(2k + l − 1)

√
N (30)

2.3.2 A Toy Example

Consider the particular case of the lackadaisical quantum walk in a complete graph with N = 8 vertices, k = 2
solutions, and l = 1 self-loops at each vertex. For illustrative purposes, these vertices have also been marked with sub-
indices, so a1 and a2 are the solutions whereas vertices b1, . . . , b6 are not solutions. In practice, however, sub-indices
or whatever kind of information that can distinguish the solutions from one another, or the non-solutions from one
another, are not available. The vertices are marked only with a or b, exclusively.

The quantum state |AB〉, for example, is formed by all vertices that are solution combined with their respective edges
for non-solution vertices. Therefore, the state |AB〉 for the given example is defined according to Equation 31.

8

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

|AB〉 = 1√
k(N − k)

∑

a

∑

b

|a〉 ⊗ |a→ b〉 = 1√
12

[(
|a1〉 |a1 → b1〉+ |a1〉 |a1 → b2〉+ |a1〉 |a1 → b3〉

+ |a1〉 |a1 → b4〉+ |a1〉 |a1 → b5〉+ |a1〉 |a1 → b6〉
)
+

(
|a2〉 |a2 → b1〉+ |a2〉 |a2 → b2〉

+ |a2〉 |a2 → b3〉+ |a2〉 |a2 → b4〉+ |a2〉 |a2 → b5〉+ |a2〉 |a2 → b6〉
)]

(31)

The analysis for the quantum states |AA〉, |BA〉 and |BB〉 is analogous. With the new quantum states prepared, the
initial state of the system |Ψ0〉 can be defined according to Equation 32. This initial state is also normalized.

|Ψ0〉 = 1

8

(
2 |AA〉+

√
12 |AB〉+

√
12 |BA〉+ 6 |BB〉

)
(32)

Making only three (t = 3) successive applications of the evolution operator U , represented by the matrix of Equation
33, the probability of success (the measurement of a solution state) tends to 1. A measurement made in |Ψ3〉 makes
the system to collapse to the state |AA〉. All energy of the system is concentrated at this state |AA〉.

U =
1

2

1 −
√
3 0 0

0 0 −1
√
3

−
√
3 −1 0 0

0 0
√
3 1

 (33)

3 Proposal Procedure

Quantum walks are algorithms that can be applied to search problems [Shenvi et al., 2003, Lovett et al., 2019, Wong,
2018], where the proof of its correctness can be found in [Feng et al., 2007]. Thus, it is possible to idealize this
algorithm’s application to find the set of synaptic weights that train a classical artificial neural network. Based on
the concept of quantum information processing called agent-environment presented in Section 1, the objective is to
replace the classical algorithm with a quantum search algorithm in a neural network training process.

In a classical environment, we replace the backpropagation algorithm for a quantum walk to search synaptic weights.
The evolution of the quantum walk occurs by applying a unitary operator U over an initial state. Subsequently, a
measurement of the walker state is performed. If the measurement is performed at each step, then the quantum walk
falls in the classical case. In this situation, the correlations between the different positions of the walker are lost.

For the correlations between the walker’s positions to be maintained, the measurement should not occur at every
single step. Thus, the measurement process only will occur after a predetermined time t. Once the correlations
between positions hold, constructive and destructive interference occurs [Portugal, 2013]. The interference caused by
these relationships between positions generates the probability amplitudes for each position. Depending on the initial
state of the system, the probability distribution may be asymmetrical or symmetrical according to equations 8 and 9,
respectively, as viewed in Section 2. As observed in Figures 1 and 2, according to the probability distribution, the
chances of finding the walker on the extremities are higher than finding it in another position. In this way, it is possible
to obtain these extreme positions of the walker with a high probability of measurement.

Therefore, it is possible to determine with a high probability the walker’s extreme position after a given number of
steps. If this position does not contain a solution, the quantum walk search will not succeed. It is necessary to know
the position where there is a solution and guarantee an amplitude amplification for this position. It is also necessary
to guarantee that the solution state at the time of measurement has a high probability of measurement. The complete-
graph quantum walk proves to be adequate for these proposals. The complete-graph quantum walk employed here
considers only the information about the solution or no solution label (a or b) contained in all vertices to execute the
quantum walk evolution. However, to define these labels, the information about the weights used to train the classical
ANN is necessary. Thus, besides the label for solution (|a〉) and no solution (|b〉), each vertex will also have the
information about the associated weights used to train the classical ANN.

Consider a w-dimensional lattice. Let a classical ANN with the number of weights equal to the lattice’s dimension, w
weights. In the discrete representation, each intersection of lattice lines can represent an ANNw weights configuration.
Figure 4 represents this idea for the 2-dimensional case. In this way, each point i in this w-dimensional lattice will

9

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Figure 4: On the left side, a discrete schematic representation of the set of weight values of an artificial neural network.
This representation generates a grid, represented here by a lattice. Each intersection point i of the lattice has the
information about the set of weight values ri. With an oracle operator, the state solution label (a for a solution and b
for no solution) is determined. On the central figure, the complete graph representation of the grid. On the right side, a
neural network with one neuron demonstrates the relationship between the labels on the grid, the complete graph, and
the definition of synaptic weights w0 and w1, where g(·) is the activation function, and u = x0·w0 + x1·w1 − θ.

be a vertex in a complete graph, where it was labeled as a if its value configuration of weights ri is a solution for
the ANN. Otherwise, it was labeled as b. The labels a and b are created by applying the oracle to the grid. Change
the grid representation to the complete graph creates a new representation, where all i grid point is a vertex with the
information ri (the weight set) and the label a or b. Wong’s quantum walk [Wong, 2015] is applied in the complete
graph, where now each vertex has the label a or b, and the associated weight set (ri) used to train the classical ANN.
Then, the search procedure is done, where a vertex labeled by |a〉 is searched.

Thus, to recover the synaptic weights that trained the ANN after the quantum walk evolution, it is necessary to obtain
the specific weight values configuration ri of the state measured. For this reason, a modification is proposed to the
original procedure, including the weight vector |~ri〉 in the base states definition. All quantum walk search procedure
is the same, where the state with label a is sought. However, with this new associated information about the weight
vector |~ri〉, it is possible to determine the walker’s position on the grid (or lattice) in the final measurement procedure
in the final state found by the quantum walk algorithm. In this way, the information about the set of weight values
used to train the classical ANN can be recovered. The new definition of states is presented in Equation 34. With this
modification, it is proposed the search procedure presented in Algorithm 1.

|AA〉 = 1

k

∑

a

∑

a′

|~ra〉 |a〉 ⊗ |a→ a′〉

|AB〉 = 1√
k(N − k)

∑

a

∑

b

|~ra〉 |a〉 ⊗ |a→ b〉

|BA〉 = 1√
k(N − k)

∑

b

∑

a

|~rb〉 |b〉 ⊗ |b→ a〉

|BB〉 = 1

N − k
∑

b

∑

b′

|~rb〉 |b〉 ⊗ |b→ b′〉

(34)

Initially, it is necessary to define some initial parameters of the Algorithm 1. A w-dimensional grid (or a lattice)
will define the possible weight configurations for the walker, where each dimension represents an ANN weight set.
Therefore, the user defines the number of grid points, N , and the distance between adjacent points, ∆p. In this way,
N will be the number of possibles positions state of the system for the walker, represented by the complete graph,
and ∆p will define the granularity of the weights representation. If ∆p is small, the weight representation will have
high resolution, but a significant N value is necessary to search for a solution in practice. If ∆p is large, the weight
search will have low resolution, but a smallN value is sufficient to cover a given search space. The algorithm employs
an oracle, which defines the vertices that are solution and non-solution. The oracle employed here is described in
Section 4.5. In this way, it is considered that the oracle used in this work is independent of the algorithm proposed.
An w-dimensional sparse matrix with N elements represents classically the oracle, where the element marked with
number one denotes a solution and with zero a non-solution. The user also defines the number of self-loops per vertex,
l. However, the number of self-loops per vertex here always was l = 1 for all experiments.

10

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

After defining the initial parameters, the proposed algorithm performs a quantum count to estimate the number of
solutions k in the search space, as indicated in line 3 of the Algorithm 1. It is necessary to know the quantity k of
solutions to determine the initial state, the shift operator U , and the number t of iterations. It is possible to define the
number of solutions by combining the phase estimation technique based on the Fourier Quantum Transform with the
Grover iteration [Nielsen and Chuang, 2002]. Alternatively, it is also possible to apply the amplitude estimation to the
problem of approximate counting [Brassard et al., 2000], or to use techniques inspired by Shor’s celebrated quantum
factorization algorithm and combines them with Grover’s algorithm [Boyer et al., 1998]. Note that the number of
solutions is known at this moment, but their search space positions are not known.

With the number k of solutions determined, the states will be constructed according to Equation 34. The quantum walk
occurs in a complete graph, as shown in Figure 3, where the quantum walk will be performed in a four-dimensional
space according to in Section 2.3, reducing the search space. Thus, the search space is represented by the superposition
of vertices and edges already presented in Equation 34.

Following the Algorithm 1 in line 4, the initial state preparation is performed considering the space size, the number
of solutions, and the relations between vertices and edges, according to Equation 25.

After preparing the system, the quantum walk is performed. Line 5 of the Algorithm 1 defines the total number of
steps t, according to Equation 30. At each step j, the evolution operator U is applied to the quantum system |Ψj−1〉,
where j = 1, 2, . . . , t, as shown in line 6.

Once the evolution is completed, a measurement in the basis |x〉 |x→ y〉 is performed, as presented in line 8. Thus, the
states |a〉 |a→ a′〉 or the states |a〉 |a→ b〉, which both have the solutions, is obtained with high probability. It is worth
noting that the vertex information where the walker stays defines the found solution at the time of the measurement.
The direction where the walker points for the next quantum movement (defined by its edge) is only relevant to define
the quantum walk evolution, not to define the solution state at the measurement time.

After recovering the states |a〉 |a→ a′〉 or |a〉 |a→ b〉 with high probability after the measurement, in the line 9, the
algorithm initializes the classical neural network weights as shown on the right side of Figure 4.

Algorithm 1: TRAINING ALGORITHM.
1 begin
2 Set the parameters: ∆p, N and l
3 Quantum count execution
4 Preparation of the initial state
5 for j ← 1 to π√

2(2k+l−1)

√
N do

6 |Ψj〉 ← U |Ψ(j−1)〉
7 end
8 Make the measurement
9 Initialize the weights of the Artificial Neural Network

10 end

4 Experiment Setup

A simple classification problem was performed to assess the concept of the proposed algorithm. An artificial neural
network of MLP type (Multilayer Perceptron Type) was employed to solve the “EXCLUSIVE-OR” classification
problem. The neural network was initialized with the weights generated by the procedure proposed in this work.

4.1 Exclusive-OR Function

The EXCLUSIVE OR (XOR) problem, a simple but nonlinearly separable problem, was used as the function to be
learned by the neural network. The XOR function, also known as exclusive disjunction, is an operation on two binary
values, x0 and x1, where if only one of these binary values is equal to 1, then the function returns 1, otherwise returns
0 [LeCun et al., 2015].

Consider the problem of classifying points in the unitary hypercube. The EXCLUSIVE OR can be understood as
a particular case of this problem. In this case, it is sufficient to consider only the four vertices of the unit square
corresponding to the points {(0, 0), (0, 1), (1, 0), (1, 1)}. Each set of patterns determine outputs that are called classes.
The inputs {(0, 0), (1, 1)} generate outputs x0 ⊕ x1 = 0, where it will be called class 0. The inputs {(0, 1), (1, 0)}

11

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Figure 5: Configuration of a multilayer neural network. The letters θ1, θ2 and θ3 mean the bias and the letters y1, y2
and y3 mean the outputs of neurons.

generate outputs x0 ⊕ x1 = 1, class 1 [Haykin, 2001]. Therefore, it is a pattern classification problem that consists of
associating an input pattern (x0, x1) with one of the previously defined classes {0, 1} [Da Silva et al., 2017].

4.2 Neural Network Architecture

The EXCLUSIVE OR problem can be solved by a Multi-Layer Perceptron (MLP) neural network with three neurons,
where two of them are in the hidden layer, and the other neuron is in the output layer. The neural network used in this
work follows this architecture.

The input layer has two values {x0, x1} that are inputs data. The hidden layer has two neurons. The output layer
has one neuron. Each neuron has a bias. Thus, the neural network has nine synaptic weights. Six weights are in the
hidden layer {ω00, ω01, ω02, ω10, ω11, ω12} and three are in the output layer {ω20, ω21, ω22} according to Figure 5.
The sigmoid logistic, described by Equation 35, is the activation function for all neurons of the hidden layer and the
neuron of the output layer is linear,

f(x) =
L

1 + e−λ(x−ζ0)
(35)

where λ = 1 is the declivity of the curve, L = 1 is the maximum value of the curve, and ζ0 = 0 is the value of x at
the midpoint of the curve.

4.3 Hardware and Software Setup

The simulations were performed using the following hardware configurations. For simulate neural network training
with classical backpropagation algorithm, it was used,

• Operational System: Debian GNU/Linux 10 Buster;
• Memory: 4 GiB;
• Processor: Intel Core i3-5005U CPU @ 2.00 GHz x 4;
• OS type 64-bit;
• HD: 1 terabytes.

To simulate the procedure using a quantum walk in the complete graph, it was used

• Operational system: Debian GNU/Linux Jessie 8.11;
• Memory: 16 GiB;
• Processor: Xeon Intel 5th gen CPU @ 3.6 GHZ x 8;
• OS type 64-bit;

12

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Figure 6: Illustration of a search in an infinite two-dimensional grid using a window with a finite set of points.

Figure 7: The circuit that implements the Deutsch algorithm [Yanofsky et al., 2008].

• HD: 4 terabytes.

The programming languages used to write the algorithms were Python 3.6 with the open-source machine learning
framework PyTorch2.

4.4 Search Space

Theoretically, the quantum walk is performed in an infinite space. However, in practice, because of memory and
hardware limitations, we have determined sub-spaces or windows. Once the window size is defined, the procedure
performs the search within it.

Geometrically, the windows employed here will always be hyper-cubes in the search space. For example, in the 2-
dimensional case, a window is a square with N = z2 points, where z is the number of points in a dimension. For the
d-dimensional case, a window is a hyper-cube whit N = zd points, where there are z points in each dimension.

If there is no solution in the sub-region defined by the windows, the windows will be shifted. By applying offsets, the
windows are moved by performing the search in the infinite search space regions. To illustrate, consider an infinite
two-dimensional search space as illustrated in Figure 6. These window shifts in infinite space are carried out until at
least one solution is found in the current window. There are many forms to define the shift of the windows. However,
the simplest way is to sum an offset of size z for each dimension with respect to the current window, which was the
approach used in this work.

4.5 Representation of the Oracle

An oracle is a structure capable of generating answers to binary questions. The circuit shown in Figure 7 represents
the implementation of the Deutsch algorithm. Conditional port Uf implements the NOT-controlled port with control
bit f(x) and acts as Uf : |x, y〉 → |x, y ⊕ f(x)〉.
Port Uf is a black box with no explicit implementation, often called an oracle [Sasaki and Nakahara, 2013]. In this
way, a quantum oracle is a “black box” operator that, when applied to a system state, return if this specific state is a

2https://pytorch.org/

13

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

solution or is not a solution. An example of oracle implementation can be seen in the work of Zheng et al. [2018],
which uses Grover’s oracle as a central part of the circuit that implements their proposal of quantum perceptron models
[Kapoor et al., 2016].

In this way, it was necessary to create a representation of an oracle to perform the simulations. The solution employed
uses a sparse matrix with the size of the search space. The positions filled with 1 indicate the points that are a solution
and 0 otherwise. In practice, the oracle answers whether a given point in the walker space, after converted to synaptic
weights, correctly classifies the input patterns or not. However, a formal conception of this quantum oracle for this
purpose is beyond the scope of this work. Therefore, we considered it existing.

4.6 Weight Generation

The quantum walk performs a search in quantum states that represent points in an integer space. At the end of the
process, it is necessary to convert these points into synaptic weights values represented by real numbers. Thus, a real
value was defined, ∆p, where it will multiply each measured point at the end of the process. That is, the walker grid
space is in ∆p units. The walker starts at the window center, and the walker will move by the positive and negative
integer indices of each dimension of the grid.

Therefore, when the proposed algorithm makes the measurement at the walker position in the grid |ri〉 (where i is the
label for each point in the w-dimensional search space), the integer components of ri = (n1, n2, . . . , nw) for each
dimension are converted to the real values ∆p ∗ nj (j = 1, 2, . . . , w), generating the synaptic weights for the neural
network. In this way, the search is performed only among the factors of ∆p. Also, the value defined for ∆p establishes
the search refinement level.

4.7 Measurement Process

Through unitary transformation, closed quantum systems evolve. In order to be able to access information that is in
the |Ψ〉 state, an observation must be made. In practice, measurements are made in laboratories using physical devices,
such as lasers, magnets, scales, and stopwatches, but in theory, this measurement process is described mathematically
[Portugal, 2013]. According to the postulate of quantum mechanics, the probability of a state occurs is,

p(m) = 〈Ψ |M†
mMm | Ψ〉 , (36)

where M is a measurement operator, † is the symbol used to describe the conjugate transpose operation, and the index
m represents the results that can occur in the experiment after the measurement. The state |Ψ′〉 described in Equation
37 is the state of the system just after the measurement [Nielsen and Chuang, 2002].

|Ψ′〉 = Mm |Ψ〉√
〈Ψ |M†

mMm | Ψ〉
(37)

As an example we are going to measure the state |Ψ〉 whose states are described in Equation 34. Considering the
system with four possible results we will define the operators {|AA〉 〈AA| , |AB〉 〈AB| , |BA〉 〈BA| , |BB〉 〈BB|}.
So when applying Equations 36 and 37 we have,

p(m) = |λm|2

|Ψ′〉 = λm
|λm|

|m〉

where m = AA,AB,BA,BB.

In this way, the measurement is a probabilistic process, where theoretically, the probability of measuring a given state
|m〉 will be |λm|2. Thus, after the quantum walk evolution, it is possible to observe from the final quantum state the
quantity |λm|2 for each state component |m〉.
Statistically, as we can see in Section 5, the chances of measuring the states that contain a solution were much more
significant than measuring a state that did not contain a solution.

14

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Table 1: Classical Backpropagation Simulations. The column lr presents the investigated learning rate, Epochs limit
shows the experiment number that reached the maximum number of epochs, and Successful the number of experiments
with zero classification error.

lr Epochs limit Successful
0.5000 None 1200
0.1000 None 1200
0.0100 452 748
0.0010 467 733
0.0001 726 474

4.8 Comparison against Backpropagation Algorithm

Since the search space contains solutions to the problem, the approach proposed in this paper can find a solution
with high probability after the number of iterations defined in Equation 30. It implies that, in addition to ensuring a
successful search, the number of iterations required to reach the artificial neural network training is known a priori.

The classical backpropagation algorithm seeks to minimize an error function based on the gradient descent methodol-
ogy. For this reason, it can stagnate in local minimums. The practical implication is the possibility that the algorithm
runs indefinitely and yet does not generate correct outputs. These limitations of a gradient descent methodology are
overcome with the proposed quantum algorithm.

Furthermore, many experiments were done with both approaches to compare the proposed algorithm with the tradi-
tional backpropagation algorithm. The criterion to measure the performance was the number of iterations needed to
find an ANN weight set that solves the XOR problem. The number of epochs for the backpropagation and the number
of iterations for the proposed algorithm were observed.

Comparing the number of epochs of the backpropagation algorithm with the number of iterations of the procedure
developed in this work was applied to measure how much better one approach is than the other. The efficiency of the
proposed procedure is the order of O(

√
N/k). However, it was not possible to compare the efficiencies in terms of

running time between our procedure and the backpropagation algorithm.

5 Experimental Results and Discussions

A set of experiments with classical backpropagation was done to define a comparative baseline. Employing the same
ANN architecture 2− 2− 1 (two inputs, two hidden neurons, and one output – according to Section 4.2), five different
learning rates η = {0.5, 0.1, 0.01, 0.001, 0.0001} were investigated, where 1200 simulations were computed for each
one. The maximum number of epochs of 150000, the training stagnation, and the zero classification error were the
stopping conditions employed. The network was considered in a stagnation training situation if its MSE error did not
decrease by 1000 consecutive epochs. The classification error is zero when the ANN can classify all the four XOR
inputs correctly.

For these conditions, none of the classical backpropagation experiments reached a stagnation situation. The experi-
ments with learning rates of 0.5 and 0.1 never reached the maximum number of epochs, always reaching the perfect
classification. The summarization of this experimental behavior can be viewed in Table 1, where lr indicates the
learning rates, Epochs limit is the number of times that the experiment reached the maximum number of epochs stop
condition, and Successful is the number of experiments that obtained zero classification error.

Table 2 presents the descriptive statistics for the baseline experiments. For each learning rate, it is presented the
minimum, mean, maximum value of the Epochs number, and its standard deviation (Std.).

Table 3 presents the results of the simulations performed using the proposed computational procedure described in
Algorithm 1. Here, k represents the number of solutions, N the number of vertices, l the number of self-loops
(for all experiments l = 1), and t the number of iterations. ∆p = 0.5 was utilized for all experiments. Here, it
was investigated three configurations of N (29 = 512; 49 = 262144; 89 = 134217728) in five experiments. Two
experiments with N = 512, 2 points per dimension. Two experiments with N = 262144, 4 points per dimension,
and one experiment with N = 134217728, 8 points per dimension. The search spaces are sub-regions (windows) of
an infinite ω-dimensional grid, as presented in Section 4.4. However, the initialization of these sub-regions can occur
in different positions of the infinite grid. If there are no solutions in the current sub-region, the sub-region is moved
to another region of the infinite grid. All simulations had their sub-region initiated randomly around the origin. The

15

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Table 2: Descriptive statistics. Parameters of the backpropagation algorithm experiment for the number of epochs. lr
means the learning rate. Std. means Standard Deviation.

Epoch Statistics
lr Minimum Mean Maximum Std.
0.5000 1 33.60 319 35.68
0.1000 3 433.84 3279 463.78
0.0100 2 5277.48 132199 17927.67
0.0010 9 12949.18 148256 22451.79
0.0001 295 46987.00 149644 36780.22

Table 3: Weight search experiment by the quantum walk procedure. K means the number of solutions. N is the total
number of vertices. The number of iterations is represented for letter t. For all experiments, the number of self-loops
was l = 1.

Experiment k N
t

Theoretical Simulated
1 12 512 10.26 11
2 12 512 10.26 11
3 17 262144 195.83 196
4 20 262144 179.83 180
5 80295 134217728 64.22 65

shift of the sub-region occurs until a region with at least one solution is found. With a few interactions, the sub-space
converged to a region with solutions in all cases studied here.

Coincidentally, although the experiments 1 and 2 used distinct search windows, the proposed procedure converged to
sub-spaces with 12 solutions (see Table 3). As N = 512 and k = 12 for those experiments, the iteration number t
is also equal, being t = 11, which was theoretically defined to 10.26 by Equation 30. For the simulations 3 and 4,
the proposed procedure converged to sub-spaces with 17 and 20 solutions, respectively. Thus, the iteration number
t is different for those simulations, being 196 and 180, theoretically defined to 195.83 and 179.83, respectively. For
the simulation 5, the procedure converged to a sub-space with more than eighty thousand solutions (80295), which
implied in t = 65 iterations (theoretical number of iterations of 64.22).

The procedure developed using the quantum search algorithm, even in spaces with a high number of vertices, was
able to amplify the amplitudes in a relatively low number of iterations compared with the results for the classical
backpropagation procedure. In the best case, the maximum iteration number for the quantum walk algorithm was 11,
while the mean number of epochs obtained by the backpropagation algorithm (in the best case) was 33.

It is also possible to see in Table 2 that the minimum number of epochs of backpropagation is less than the number of
the interactions of the quantum walk procedure, see Table 3. Although it appears that the classical backpropagation
algorithm has an advantage over the quantum walk procedure, it is essential to observe that the number of interactions
t is known before start the search in the quantum walk algorithm, but it is not for the classical backpropagation.
Thus, the critical measure to characterize the practical cost expectation is the mean number of epochs for the classical
backpropagation. Prior knowledge of the amount of interaction required for the algorithm to converge is a great
advantage of the quantum walk algorithm.

Therefore, observing the mean result of epochs required for network training by the backpropagation (Table 2) and
the values of t in Table 3, the computational proposed procedure is more efficient on average. Depending on the size
of the search space of the proposed algorithm, the network training using the backpropagation algorithm, in some
cases, performs a smaller number of iterations. However, on average, the iterations number of the proposed algorithm
is decidedly smaller than the backpropagation procedure. As seen in the backpropagation simulations, the random
initialization of weights is one factor that influences the result of time convergence for the network. However, because
of the impossibility of determination for an excellent region to initialize the weights, the mean value and standard
deviation are the information statistically relevant for backpropagation experiments, where low performance and high
variation in training epochs number results are obtained when compared with the proposed quantum algorithm.

16

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Table 4: Measurement experiment — the percentage measure observed for each quantum. The states |AA〉 and |AB〉
are the solutions.

Experiment |AA〉 |AB〉 |BA〉 |BB〉
1 95.48% 3.07% 1.40% 0.05%
2 95.03% 3.67% 1.26% 0.04%
3 100.0% 0.00% 0.00% 0.00%
4 99.99% 0.00% 0.01% 0.00%
5 99.88% 0.10% 0.02% 0.00%

Nevertheless, the proposed algorithm is quantum. Table 4 shows the measurement probabilities for the five simulations
for neural network training. It was considered both states |AA〉 and |AB〉 are solutions, given that for these states, the
walker is in a vertex a. At least 98.55% of the measurements find a solution (experiment 1), reaching 100% for the
experiment 3. At mean, the proposed quantum procedure find a solution in 99.44% of the measurements.

6 Conclusion

Training based on the backpropagation algorithm (or descendant gradient algorithms) may fall to local minimums.
Many factors can influence this result and carry training for many epochs until the network converges to a solution or
even stagnates. Therefore, it is impossible to say whether the training will stop or that good accuracy can be guaranteed
in a prior way.

The non-stagnating in local minimums and the knowing in advance the number of iterations required to obtain a
solution are some advantages of the proposed procedure. It is not possible to guarantee that the solution obtained is
optimal because the probability is equal between all weight set solutions within the state |AA〉 and the state |AB〉.
However, with a high probability, there will have a valid solution at the end of the procedure. So, the procedure
proposed here guarantees the neural network training with high probability. However, the proposed methodology is a
theoretical proposal. In practice, the proposed algorithm needs a quantum computer, which does not exist yet.

Another critical point is the oracle. In a quantum system, an oracle is an operator that can answer if a given state is
or is not marked, i.e., if a given state is or is not a solution. For the proposed methodology, an oracle would be an
operator capable of determining whether a given state would train a network or not. Here, an oracle was simulated
by a simple matrix of zeros and ones. Each position in the oracle matrix is a possible state in the quantum system. If
the value is 1, then the state is a solution. Otherwise, the state is not a solution. The creation of a real quantum oracle
operator is a future research.

As seen before, the execution time of the proposed algorithm is of the order of O(
√
N/k), i.e., there a quadratic gain

when compared with the classical analog. In this case, the search problem grows exponentially, the window’s search
space is O(Pω), where P =

√
(N), N is the number of points in the search window (a squared window), and ω is

the number of ANN weights. The number of qubits required to represent ω synaptic weights is equal to ω ∗ log2(N).
The proof of correctness of the quantum walk algorithm can be found in [Feng et al., 2007].

Finally, classical simulations showed a significant gain in training an artificial neural network using the procedure that
applies a quantum walk to find the set of weights compared with the use of the backpropagation algorithm.

Acknowledgments

Acknowledgments to the Science and Technology Support Foundation of Pernambuco (FACEPE) Brazil, Brazilian
National Council for Scientific and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of this
research.

References

James R Powell. The quantum limit to moore’s law. Proceedings of the IEEE, 96(8):1247–1248, 2008.
doi:10.1109/JPROC.2008.925411.

17

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Jasmeet Singh and Mohit Singh. Evolution in quantum computing. In 2016 International Conference System Modeling
& Advancement in Research Trends (SMART), pages 267–270. IEEE, 2016. doi:10.1109/SYSMART.2016.7894533.

Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algorithms for supervised and unsupervised machine
learning. Quantum Physics, 2013.

Noson S Yanofsky, Mirco A Mannucci, and Mirco A Mannucci. Quantum computing for computer scientists, vol-
ume 20. Cambridge University Press, Cambridge, UK, 2008.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-
eighth annual ACM symposium on Theory of computing, pages 212–219, Philadelphia, PA, 1996. ACM.
doi:10.1145/237814.237866.

Peter Wittek. Quantum machine learning: what quantum computing means to data mining. Academic Press, 2014.
doi:10.1016/C2013-0-19170-2.

Vedran Dunjko, Jacob M Taylor, and Hans J Briegel. Quantum-enhanced machine learning. Physical review letters,
117(13):130501, 2016. doi:10.1103/PhysRevLett.117.130501.

Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. Quantum speed-up for unsupervised learning. Machine Learn-
ing, 90(2):261–287, 2013. doi:10.1007/s10994-012-5316-5.

Yu Zheng, Sicong Lu, and Re-Bing Wu. Quantum circuit design for training perceptron models. arXiv preprint
arXiv:1802.05428, 2018.

Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. Simulating a perceptron on a quantum computer. Physics
Letters A, 379(7):660–663, 2015. doi:10.1016/j.physleta.2014.11.061.

Prasanna Date, Catherine Schuman, Robert Patton, and Thomas Potok. A classical-quantum hybrid approach for
unsupervised probabilistic machine learning. In Future of Information and Communication Conference, pages 98–
117. Springer, Cham, 2019.

Esma Aïmeur, Gilles Brassard, and Sébastien Gambs. Machine learning in a quantum world. In Confer-
ence of the Canadian Society for Computational Studies of Intelligence, pages 431–442. Springer, 2006.
doi:10.1007/11766247_37.

Alberto Prieto, Beatriz Prieto, Eva Martinez Ortigosa, Eduardo Ros, Francisco Pelayo, Julio Ortega, and Ignacio Rojas.
Neural networks: An overview of early research, current frameworks and new challenges. Neurocomputing, 214:
242–268, 2016. doi:10.1016/j.neucom.2016.06.014.

Simon Haykin. Neural networks: principles and practice. Bookman, 11:900, 2001.
Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. Metaheuristic design of feedforward neural networks:

A review of two decades of research. Engineering Applications of Artificial Intelligence, 60:97–116, 2017.
doi:10.1016/j.engappai.2017.01.013.

Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine
learning. Nature, 549(7671):195, 2017. doi:10.1038/nature23474.

Thomas G Wong. Grover search with lackadaisical quantum walks. Journal of Physics A: Mathematical and Theoret-
ical, 48(43):435304, 2015. doi:10.1088/1751-8113/48/43/435304.

Nikolajs Nahimovs and Alexander Rivosh. Exceptional configurations of quantum walks with grover’s coin. In
International Doctoral Workshop on Mathematical and Engineering Methods in Computer Science, pages 79–92.
Springer, 2015. doi:10.1007/978-3-319-29817-7_8.

Thomas G Wong. Faster search by lackadaisical quantum walk. Quantum Information Processing, 17(3):68, 2018.
doi:10.1007/s11128-018-1840-y.

Neil B Lovett, Matthew Everitt, Robert M Heath, and Viv Kendon. The quantum walk search algo-
rithm: Factors affecting efficiency. Mathematical Structures in Computer Science, 29(3):389–429, 2019.
doi:10.1017/S0960129518000051.

Nikolajs Nahimovs. Lackadaisical quantum walks with multiple marked vertices. In International Con-
ference on Current Trends in Theory and Practice of Informatics, pages 368–378. Springer, 2019.
doi:10.1007/978-3-030-10801-4_29.

Luciano S. Souza, Jonathan H. A. Carvalho, and Tiago A. E. Ferreira. Quantum walk to train a classical artificial
neural network. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 836–841. IEEE, 2019.
doi:10.1109/BRACIS.2019.00149.

Renato Portugal. Quantum walks and search algorithms. Springer Science & Business Media, Switzerland, AG, 2013.
doi:10.1007/978-1-4614-6336-8.

18

Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure A PREPRINT

Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum Information Processing, 11(5):
1015–1106, 2012.

Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. AAPT, Cambridge, UK,
2002.

Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algorithm. Physical Review A, 67
(5):052307, 2003.

Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. Proof rules for the correctness of quantum programs.
Theoretical Computer Science, 386(1-2):151–166, 2007.

Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. Quantum amplitude amplification and estimation.
arXiv preprint quant-ph/0005055, 2000.

Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight bounds on quantum searching. Fortschritte der
Physik: Progress of Physics, 46(4-5):493–505, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436, 2015.
doi:10.1038/nature14539.

Ivan Nunes Da Silva, Danilo Hernane Spatti, Rogerio Andrade Flauzino, Luisa Helena Bartocci Liboni, and
Silas Franco dos Reis Alves. Artificial neural networks: A Practical Course. Springer, Switzerland, AG, 2017.
doi:10.1007/978-3-319-43162-8.

Yoshitaka Sasaki and Mikio Nakahara. Quantum Information and Quantum Computing (Kinki University Series on
Quantum Computing). World Scientific, 2013. doi:10.1119/1.1463744.

Ashish Kapoor, Nathan Wiebe, and Krysta Svore. Quantum perceptron models. In Advances in Neural Information
Processing Systems, pages 3999–4007, 2016.

19

38

Lackadaisical Quantum Walk in the
Hypercube to Search for Multiple

Marked Vertices
Article published in Brazilian Conference on Intelligent Systems

DOI: 10.1007/978-3-030-91702-9_17 A preprint can be found at:

https://arxiv.org/pdf/2108.09399

https://doi.org/10.1007/978-3-030-91702-9_17
https://arxiv.org/pdf/2108.09399

LACKADAISICAL QUANTUM WALK IN THE HYPERCUBE TO
SEARCH FOR MULTIPLE MARKED VERTICES

A PREPRINT

Luciano S. de Souza∗

Departamento de Estatística e Informática
Universidade Federal Rural de Pernambuco

Recife, Brasil
luciano.serafim@ufrpe.br

Jonathan H. A. de Carvalho
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brasil

jhac@cin.ufpe.br

Tiago A. E. Ferreira
Departamento de Estatística e Informática

Universidade Federal Rural de Pernambuco
Recife, Brasil

tiago.espinola@ufrpe.br

November 18, 2024

ABSTRACT

Adding self-loops at each vertex of a graph improves the performance of quantum walks algorithms
over loopless algorithms. Many works approach quantum walks to search for a single marked vertex.
In this article, we experimentally address several problems related to quantum walk in the hypercube
with self-loops to search for multiple marked vertices. We first investigate the quantum walk in
the loopless hypercube. We saw that neighbor vertices are also amplified and that approximately
1/2 of the system energy is concentrated in them. We show that the optimal value of l for a single
marked vertex is not optimal for multiple marked vertices. We define a new value of l = (n/N) · k to
search multiple marked vertices. Next, we use this new value of l found to analyze the search for
multiple marked vertices non-adjacent and show that the probability of success is close to 1. We also
use the new value of l found to analyze the search for several marked vertices that are adjacent and
show that the probability of success is directly proportional to the density of marked vertices in the
neighborhood. We also show that, in the case where neighbors are marked, if there is at least one
non-adjacent marked vertex, the probability of success increases to close to 1. The results found show
that the self-loop value for the quantum walk in the hypercube to search for several marked vertices
is l = (n/N) · k.

Keywords Quantum Computing · Quantum Walk · Quantum Search Algorithm.

1 Introduction

According to Shenvi et al. [2003], quantum walks provide one of the most promising features, an intuitive framework
for building new quantum algorithms. They were pioneers in designing a quantum search algorithm on the hypercube
based on quantum random walks [Potoček et al., 2009]. Recent works have used the quantum walks to search weights
and train artificial neural networks [Souza et al., 2019, 2021].

The topology of the structure where the walk is applied considerably affects the evolution of the walker [Wang et al.,
2017]. Therefore, many works are developed to improve the performance of quantum walks, quantum search algorithms

∗95, R. Manuel de Medeiros, 35 - Dois Irmãos, Recife - PE

LQW in the hypercube to search for multiple marked vertices A PREPRINT

in different structures: one-dimensional, two-dimensional, and multidimensional grids, complete and bipartite graphs,
among others [Bezerra et al., 2021, Carvalho et al., 2020, Nahimovs et al., 2019, Rhodes and Wong, 2019].

Quantum walk modification proposals are also made to improve their performance. For example, Wong [2018] added
to each vertex of a two-dimensional grid a self-loop, so the walker has some probability of staying put, achieving an
improvement over the algorithm without self-loop [Ambainis et al., 2004].

Rhodes and Wong [2020] proposed an ideal weight for all vertex-transitive graphs with a single marked vertex such that
the ideal self-loop weight is equal to the degree of the loopless graph divided by the total number of vertices. Potoček
et al. [2009] observed that the nearest neighbors are also presented with high probability and Nahimovs [2019] that
adjacent vertices can be hard to find by quantum walks.

In this way, we investigate whether the optimal value of l = (d/N) for a single marked vertex is optimal for multiple
marked vertices, where d is the degree of the loopless vertex and N is the number of vertices. We analyzed the quantum
walk on hypercube without self-loop and with self-loop. We analyzed the quantum walk on the hypercube for multiple
marked adjacent and non-adjacent vertices. Finally, we find an optimal value of l for a quantum walk in the hypercube
with multiple marked vertices.

This paper is organized as follows. In Section 2, we present some concepts about quantum walks and specifically the
quantum walk on the hypercube. In Section 3, we characterize the probability distribution along with the space, adjust
the self-loop weight for multiple marked vertices, and search for adjacent marked vertices. Finally, in Section 4 is the
conclusion.

2 Quantum Walk

The processing of quantum information is governed by quantum mechanics or quantum physics [Singh and Singh,
2016]. Quantum computing study the processing of this information [Nielsen and Chuang, 2002, Yanofsky and
Mannucci, 2008, McMahon, 2007]. Quantum walks are the quantum counterpart of classical random walks. Discrete
and continuous-time quantum walks are the advanced tools used to build quantum algorithms [Aharonov et al., 1993,
Ambainis et al., 2012]. The main feature that differentiates these two types of quantum walks is the timing used to
applying the evolution operators. In the quantum walk in continuous time, the evolution operator is applied at any time,
whereas the quantum walks in discrete time, the evolution operator is applied in discrete time steps [Venegas-Andraca,
2012]. The quantum walk evolution in the discrete-time process occurs by the successive applications of a unitary
evolution operator U that acts on the Hilbert space

H = HC ⊗HS .

The coin spaceHC is the Hilbert space associated with a quantum coin, and the walker’s spaceHS is the Hilbert space
associated with the position of the nodes in a graph, for example. The evolution operator U is defined in Equation 1.

U = S(C ⊗ IN) (1)
where, S is the shift operator, i.e., a permutation matrix that acts in the walker’s space based on the state of the coin
space. The unitary matrix C is the coin operator [Shenvi et al., 2003]. Therefore, the equation of evolution represented
by a quantum walk at time t is given by

|Ψ(t)〉 = U t |Ψ(0)〉
.

2.1 Quantum walk on the hypercube

According to Venegas-Andraca [2012], the hypercube is defined as an undirected graph of degree n and N = 2n nodes.
Each node is represented by an n-bit binary string. Two nodes ~x and ~y are connected by an edge if the Hamming
distance between them is 1, i.e., |~x− ~y| = 1. This means that ~x and ~y only differ in a single bit. The expression |~x| is
the Hamming weight of ~x. The Hilbert space associated with the quantum walk on the hypercube is

H = Hn ⊗H2n ,

whereHn is the Hilbert space associated with the quantum coin space, andH2n is the Hilbert space associated with
nodes on the hypercube.

2

LQW in the hypercube to search for multiple marked vertices A PREPRINT

According to Shenvi et al. [2003], in a d-dimensional hypercube, the d directions specify the coin state. Kempe [2002]
defines that directions can be labeled by the n base-vectors {|0〉 , |1〉 , . . . , |n− 1〉} on the hypercube which correspond-
ing to the n vectors of Hamming weight 1. These n vectors are represented by the states {|e0〉 , |e1〉 , . . . , |en−1〉},
where ed has a 1 in the d-th bit. The shift operator S described in Equation 2 acts mapping a state |d, ~x〉 → |d, ~x⊕ ~ed〉.

S =
n−1∑

d=0

∑

~x

|d, ~x⊕ ~ed〉 〈d, ~x| (2)

The initial state of the quantum walk in the hypercube is defined according to Equation 3 as an equal superposition over
all N nodes and n directions.

|Ψ(0)〉 =
1√
n

n−1∑

d=0

|d〉 ⊗ 1√
N

∑

~x

|~x〉 (3)

According to Rhodes and Wong [2020], the hypercube was the first graph in which quantum walks were researched. In
their work, Shenvi et al. [2003] presented a quantum search algorithm based on the random walk quantum architecture.
In this article, we are based on the approach used by Wong [2018]. The pure quantum walk (without search) evolves by
repeated applications from the evolution operator described in Equation 1, where C is Grover’s “diffusion” operator on
the coin space and is given by

C = 2 |sC〉 〈sC | − In (4)

where, In is the identity operator, n is the vertex degree loopless, and |sC〉 is the equal superposition over all n directions
[Moore and Russell, 2002, Shenvi et al., 2003], i.e.,

|sC〉 =
1√
n

n−1∑

d=0

|d〉 . (5)

We include a query to the “Grover oracle”, described in Equation 6, at each step of the quantum walk.

U ′ = U · (In ⊗Q) (6)

where, Q = IN − 2 |ω〉 〈ω|, and |ω〉 means the marked vertex. The system is initiated according to the initial state
presented in Equation 3.

3 Analyzing the quantum walk on the hypercube

In this section, we experimentally analyze the quantum walk on the hypercube searching for multiple marked vertices.
The simulations and the obtained results are detailed in the following subsections.

3.1 Characterizing the probability distribution along the space

Previous works showed there is an amplification in the solution neighborhood, which interferes with the amplification
of the solutions by the quantum walk on the hypercube [Shenvi et al., 2003, Potoček et al., 2009, Nahimovs et al., 2019].
Initially, it is necessary to understand how the probability amplitudes are distributed in the search space and how the
quantum walk evolves in the hypercube over time considering the impacts caused by the solution neighborhood.

Figure 1 shows the probability of success after one hundred steps for the quantum walk in the hypercube with one,
two, three, and four arbitrarily marked vertices. Although the search algorithm is able to amplify the probability
amplitudes of the marked vertices, if a measurement is performed, the probability of finding one of the solutions is still
unsatisfactory. Another interesting aspect that can be observed is that as the number of marked vertices increases, the
speed of amplification the probability amplitudes also increases. However, it is necessary to increase the probability
amplitudes of the marked vertices.

Figure 2 shows the probability distributions of the marked vertices only after the number of iterations necessary to reach
the maximum value of the probability amplitude close to 1/2. As Potoček et al. [2009] noted in their work, we also
note that the set of neighbors have a high probability. If we add the amplitudes of the neighbor’s vertices, the values

3

LQW in the hypercube to search for multiple marked vertices A PREPRINT

Figure 1: Success probability after 100 steps in a hypercube with 1024 nodes. The solid blue curve is the success
probability for one solution. The dotted orange curve is the success probability for two solutions. The dot-dashed green
curve is the success probability for three solutions. The dotted red curve is the success probability for four solutions.

are compatible with the amplitude value of the marked vertex. We conclude that a considerable part of the energy,
approximately 1/2, is retained in the neighbors of the marked vertices. Figure 2d, shows the probability distribution of
four marked vertices. Note that the amplitudes of each vertex have their maximum and a neighborhood region. The
x-axis distribution is the relative position of the position on the hypercube. It explains why even increasing the number
of marked vertices, the success probabilities do not reach values above 1/2.

Figure 3 shows the success probability for the quantum walk with one and four marked vertices after one hundred steps.
Figure 3a shows the behavior of the success probability of one marked vertex, the solid blue curve, and its neighbors,
which is the dotted orange curve. If a measurement is performed, the probability of getting a neighbor vertex is greater
than getting a marked vertex. With probability above 90%, you get the solution or a vertex that is one step away from
the solution. Figure 3b shows the behavior of the success probability of four marked vertices, the solid blue curve, and
their neighbors, the dotted orange curve. Note that in a step when the probability of success of the marked vertices
is high, the probability of success of the neighbors decreases, and in the next step, when the probability of success
of the neighbors is high, the probability of success of the marked vertices decreases. Because of this behavior, if a
measurement is performed, the probability of getting a neighbor is high. This happens in Figure 3a but more smoothly.

Observing these results, we must consider the probability p of obtaining a marked vertex and the probability p′ = (1−p)
of obtaining an unmarked vertex which is the sum of the probabilities of the (N − k) vertices, where k is the number
of marked vertices. These results are shown in Table 1. Note the column of the value of p′, which is composed of
the value of the amplitudes of the neighbors and the amplitude of the vertices that are neither neighbors nor marked.
The probability of the walker finding a region is high because the energy is concentrated in the neighboring region. It
is concluded that the amplification of the neighborhood around the marked vertices interferes with the probability of
success of finding a target vertex.

3.2 Adjusting the self-loop weight for multiple marked vertices

Many works have been proposed with the purpose of improving the search capacity of quantum algorithms. According
to Wong [2015], adding a self-loop to each vertex boosts the success probability from 1/2 to 1. A modification to the
initial state in the Equation 3 and to Grover’s coin in the Equation 4 is needed so that the self-loop can be added. The

4

LQW in the hypercube to search for multiple marked vertices A PREPRINT

(a) (b)

(c) (d)

Figure 2: Probability distribution of the quantum walk after the number of iterations necessary to reach the maximum
value of the probability amplitude with n = 10 and N = 1024 vertices. The y-axis values are at different ranges to
improve visualization. (a) solid blue bar show the probability distribution for one marked vertex. (b) solid blue bar and
orange dashed bar show the probability distribution for two marked vertices. (c) solid blue bar, orange dashed bar and
green dash-dot bar show the probability distribution for three marked vertices. (d) solid blue bar, orange dashed bar,
green dash-dot bar and dotted red bar show the probability distribution for four marked vertices.

Table 1: Probabilities of success of marked and unmarked vertices.
Probabilities of success

Figure p
p′ = (1− p)

Neighbors Neither
2a 43.5% 48.2% 8.3%

2b 45.8% 45.5% 8.7%

2c 44.2% 48.4% 7.4%

2d 47.4% 44.5% 8.1%

3a 43.5% 48.2% 8.3%

3b 40.5% 52.9% 6.6%

5

LQW in the hypercube to search for multiple marked vertices A PREPRINT

(a) (b)

Figure 3: Probability of success after 100 steps with n = 10 and N = 1024 vertices. (a) shows the probability of
success for one marked vertex and its neighbors. (b) shows the probability of success for four marked vertices and their
neighbors.

addition of the self-loop is described in Equation 7. Thus, the coin space is now an (n+ 1)-dimensional space [Rhodes
and Wong, 2020].

|sC〉 =
1√
n+ l

(
√
l |	〉+

n−1∑

d=0

|d〉
)

(7)

One of the concerns when adding a self-loop at each vertex is knowing the best self-loop value. More specifically, in
the case of the quantum walk on the hypercube, Rhodes and Wong [2020] proposed an optimal self-loop value

l =
d

N
, (8)

where d is equal to the degree of the loopless graph and N is the number of vertices in the hypercube. Recently, two
works showed that inserting the number of marked vertices in calculating the self-loop value optimizes quantum walks.
Carvalho et al. [2021] shows that the optimal value of the self-loop for quantum walks in D-dimensional grids with
multiple marked vertices is

l =
2Dm

N
,

where 2D is the number of movements the walker can do, not counting the self-loop, m the number of marked vertices,
andN the number of vertices of the grid. Nahimovs and Santos [2021] shows that for different types of two-dimensional
grids - triangular, rectangular, and honeycomb the optimal self-loop value is also,

l =
m · d
N

where d is the degree of the vertex, m is the number of marked vertices, and N is the number of vertices of the grid.

Figure 4a shows the probability of success after two hundred steps for one marked vertex. Here, the values of l were the
same as used by Rhodes. The dashed red curve has the optimum value of l. Our interest was to investigate whether the
value of l described in Equation 8 also improved the walk results for a number (k > 1) of marked vertices. For this, we
performed three more experiments where we increased the number of marked vertices up to four. As we added the
marked vertices the success probability of the dashed red curve decreased to 88.7% (4b) while the success probability of
the dotted purple curve increased to 99.8% (4b) but then also decreased to 96.2% (4c) and 89.3% (4d). It indicates that
a new value of l is required when the number of marked vertices increases. To find the optimal self-loop for multiple
marked vertices, we defined a set of values in the form l′ = (α · l), where α ∈ N.

6

LQW in the hypercube to search for multiple marked vertices A PREPRINT

(a) (b)

(c) (d)

Figure 4: Comparison between multiple self-loops values and l = (n/N). (a) shows the success probability for one
marked vertex. (b) shows the success probability for two marked vertices. (c) shows the success probability for three
marked vertices. (d) shows the success probability for four marked vertices.

Figure 5 compares the probability of success for a set of marked vertices, k = {2, 3, 5, 14, 17}, these vertices were
chosen randomly as well as their number. The self-loop values for these vertex numbers are α · l, where l = (d/N) and
α = {1, 2, 3, ...}. Note that the curves have their maximum points exactly at the locations on the x-axis where the l′
values are. We can conclude that the value of (α = k). Therefore, we can set the value of l for multiple marked vertices
for the quantum walk in the hypercube,

l′ =
n

N
· k (9)

where n is equal to the degree of the loopless vertex of the hypercube, N the number of vertices in the hypercube, and
k the number of marked vertices. The self-loop value shown by Nahimovs and Santos [2021] for the quantum search in
various types of two-dimensional grids coincides with the optimal self-loop value for the search for a quantum walk in
the hypercube.

Figure 5 shows that, as the values of l approach the optimal value, the probability of success of the curve also approaches
its maximum value. We can observe this behavior in Table 2 which shows the probability of success for multiple
values of l and multiple marked vertices. Consider the values of the main diagonal, which are the maximum success
probabilities for each l = (n/N) · k.

Table 2 shows the relationship between the self-loop value and the number of marked vertices. We observe the
relationship between the self-loop value and the number of marked vertices. Note that when the values of l approach
the optimal values for each number of marked vertices, there is an improvement in the probability amplitude. Figure 6

7

LQW in the hypercube to search for multiple marked vertices A PREPRINT

Figure 5: Investigation to set the value of l for multiple marked vertices.

Table 2: Probability of success for multiple values of l.

l = (n/N) · k Number of marked vertices
1 2 3 4 5 6 7 8 9 10

(n/N)*1 0.999 0.888 0.75 0.663 0.775 0.592 0.575 0.576 0.589 0.55
(n/N)*2 0.888 0.998 0.958 0.886 0.815 0.9 0.705 0.672 0.639 0.624
(n/N)*3 0.749 0.959 0.998 0.976 0.934 0.886 0.941 0.792 0.857 0.727
(n/N)*4 0.64 0.888 0.978 0.998 0.975 0.954 0.922 0.885 0.847 0.813
(n/N)*5 0.555 0.816 0.937 0.986 0.996 0.989 0.966 0.943 0.912 0.883
(n/N)*6 0.49 0.75 0.888 0.958 0.989 0.996 0.991 0.973 0.953 0.928
(n/N)*7 0.438 0.691 0.84 0.926 0.969 0.992 0.996 0.99 0.978 0.983
(n/N)*8 0.395 0.641 0.794 0.888 0.944 0.895 0.991 0.993 0.99 0.988
(n/N)*9 0.361 0.596 0.75 0.852 0.915 0.957 0.978 0.993 0.994 0.982
(n/N)*10 0.331 0.554 0.711 0.816 0.888 0.935 0.966 0.982 0.99 0.996

shows the probability of success after two hundred steps for multiple marked vertices. We can conclude that for cases
where there is more than one marked vertex, the optimal value of l = (n/N) · k.

3.3 Searching for adjacent marked vertices

The results found in the previous sections refer to the search for non-adjacent marked vertices, i.e., | ~ωi − ~ωj | 6= 1 the
Hamming distance from vertex ~ωi and all other marked vertices is different from 1. Nahimovs et al. [2019] shows in
their work that for quantum walks in the hypercube if the search space contains marked neighbors vertices, the search
can be drastically affected. The authors considered two sets, one with two adjacent marked vertices and the other with
two non-adjacent marked vertices. In the first case, the two adjacent marked vertices are M = {0, 1}. The absolute
value of the overlap remained close to 1, and the probability remains close to the initial state probability. In the second
case, the two non-adjacent marked vertices are M = {0, 3}. The behavior on this one is different, the same behavior as
the solid blue curve in Figure 3a.

As the addition of self-loop in the quantum walk in the hypercube improved the search for multiple non-adjacent
marked vertices, we investigated the case where the marked vertices are adjacent. We consider ten sets of vertices,
M = [{0, 1}, {0, 1, 2}, · · · , {0, 1, 2, 4, 8, · · · , 256, 512}], i.e., all vertices adjacent to the vertex 0. We add one more
vertex to the set of marked vertices on each new walk until the number of vertices in M is equal to the degree n of the
vertex.

8

LQW in the hypercube to search for multiple marked vertices A PREPRINT

Figure 6: Probability of success after 200 steps. Solid blue curve, k = 1. Dotted orange curve, k = 2. Green dash-dot
curve, k = 3. Red dashed curve, k = 4. Dotted purple curve, k = 5

(a) (b)

Figure 7: Probability of success after 200 steps with n = 10 and N = 1024 vertices. Shows the probability of success
for k adjacent marked vertices. (a) shows for l = (n/N) and (b) for l = (n/N) · k.

Figure 7 shows the probability of success after two hundred steps. Figure 7a shows the result for the value of l = (n/N).
The probability reaches its maximum when the number of vertices reaches k = 4 with a probability of success of
99.1%. Then the probability starts to decrease as k increases. Figure 7b shows the result for the value of l = (n/N) · k.
The probability reaches its maximum when the number of vertices reaches k = 11 with a success probability of
94.5%. Although the probability increases with a slower speed when k = 5, it already reaches 78.3%. This behavior is
interesting for search spaces where the marked vertex density is high. Note the probability of the solid cyan curve. This
behavior was found in work done by Nahimovs et al. [2019] and was repeated here in our experiments. According to
the authors, this is because the quantum walk has a stationary state.

Figure 8 shows the comparison between what happens to the success probabilities in Figure 7 when the number of
k increases. Note the dotted orange curve, the probability of success grows to its maximum value when the value of
l = (n/N) · k. The same does not happen when l = (n/N).

We considered before that the marked vertices were neighbors. Now, let us analyze the possibility that in addition
to having marked vertices in the neighborhood, there are also marked vertices that are not neighbors. We run ten

9

LQW in the hypercube to search for multiple marked vertices A PREPRINT

Figure 8: Maximum probability reached for each number of marked vertices in the neighborhood after one hundred
steps with n = 10 and N = 1024 vertices. Evaluating the interference of the number of adjacent marked vertices in the
value of l.

(a) (b)

Figure 9: Maximum probability reached for each number of marked vertices after one hundred steps with n = 10
and N = 1024 vertices. (a) shows the probability of success for k adjacent and non-adjacent marked vertices for
l = (n/N). (b) shows the probability of success for k adjacent and non-adjacent marked vertices for l = (n/N) · k.

experiments, and each one starts with two adjacent marked verticesM = {0, 1}. In each experiment, a i = {1, 2, 3, · · · }
non-adjacent vertex is randomly marked and the next marked neighbor, i.e., M = {0, 1, 2, ...}. Therefore, in the tenth
experiment, there will be eleven adjacent and ten non-adjacent vertices.

Figure 9 shows the behavior of probability amplitudes when for each set of adjacent vertices, a number of non-adjacent
vertices are marked. Figure 9a shows that as new non-adjacent vertices are marked the probability is affected. Note
that the behavior seen in the solid blue curve in Figure 8 when there were no non-adjacent vertices is similar, i.e., as
the density of the marked vertices increases, the probabilities decrease, even adding the vertices non-adjacent. The
same can be seen in the case of the dotted orange curves in Figure 8 and Figure 9b, i.e., when the density of the marked
vertices increases, the probability also increases, this tells us that the value of l = (n/N) · k is optimal for high marked
vertex densities.

10

LQW in the hypercube to search for multiple marked vertices A PREPRINT

(a) (b)

Figure 10: Probability of success after 100 steps with n = 10 and N = 1024 vertices. (a) shows the probability of
success for k adjacent and non-adjacent marked vertices for l = (n/N). (b) shows the probability of success for k
adjacent and non-adjacent marked vertices for l = (n/N) · k.

Figure 10 shows the probability of success for the search of marked adjacent and non-adjacent vertices in the
search space. We performed an experiment, where, at every hundred steps, an adjacent vertex and a non-adjacent
vertex were marked, i.e., for each M set of adjacent vertices a vertex i /∈ M was marked randomly, then,
M ′ = {0, 1, i0}, {0, 1, i0, 2, i1}, · · · , {0, 1, i0, 2, i1, 4, i2, · · · , 512, i10}. Figure 10a shows the probability of suc-
cess for l = (n/N) and Figure 10b shows the probability of success for l = (n/N) · k. Note that the probability of
success above 90% is achieved in a smaller number of steps.

4 Conclusions

Many efforts are applied in order to improve the performance of quantum search algorithms. Quantum walks are the
main tool for building these algorithms. We initially analyzed the quantum walk in the hypercube applying Grover’s
search and came to the conclusion that neighbor vertices affect the search performance, an observation that has been
corroborated by other authors. We found that the walk could not improve its results even for a number of marked
vertices equal to one. Many authors have developed works for adding self-loops in various types of graphs and grids of
different dimensions. In this sense, we decided to investigate how to improve the quantum search in the hypercube using
self-loops. Previous works defined the optimal self-loop value as l = (d/N) for one marked vertex to the quantum
walk on the hypercube. After performing experiments we saw that this value of l was not optimal for multiple marked
vertices. We arrive at a value of l = (n/N) · k for an arbitrary number of vertices. This value is also used when
searching in two-dimensional grids. Another aspect of the quantum walk in the hypercube is whether the marked vertex
is adjacent or not, this interferes with the search performance. We then analyzed whether the value of l = (n/N)
and l = (n/N) · k had any positive effect when applied to the hypercube vertices. The results show that the value of
l = (n/N) is not optimal for the quantum walk in the hypercube with multiple marked vertices adjacent or not. It
also shows that for a search space where there are marked adjacent vertices, just one non-adjacent marked vertex is
sufficient for the value of l = (n/N) · k to be better. According to the results presented here, there is a greater than
90% probability that the measurement will collapse in one of the solutions. Recent works have used the quantum walks
to search weights and train artificial neural networks [Souza et al., 2019, 2021]. The quantum walk in the hypercube
has an interesting behavior, the amplification of neighbors vertices. In future work, we intend to use this quantum walk
to find a set of weights to initialize and train classical artificial neural networks. We also intend to analyze the quantum
walk in the hypercube with multiple weighted self-loops.

Acknowledgments

Acknowledgments to the Science and Technology Support Foundation of Pernambuco (FACEPE) Brazil, Brazilian
National Council for Scientific and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of this
research.

11

LQW in the hypercube to search for multiple marked vertices A PREPRINT

References
Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algorithm. Physical Review A, 67(5):

052307, 2003.
V Potoček, Aurél Gábris, Tamás Kiss, and Igor Jex. Optimized quantum random-walk search algorithms on the

hypercube. Physical Review A, 79(1):012325, 2009.
Luciano S Souza, Jonathan H A Carvalho, and Tiago A E Ferreira. Quantum walk to train a classical artificial neural

network. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS), pages 836–841. IEEE, 2019.
Luciano S Souza, Jonathan H A Carvalho, and Tiago A E Ferreira. Classical artificial neural network training using

quantum walks as a search procedure. IEEE Transactions on Computers, 2021.
Huiquan Wang, Jie Zhou, Junjie Wu, and Xun Yi. Adjustable self-loop on discrete-time quantum walk and its application

in spatial search. arXiv preprint arXiv:1707.00601, 2017.
GA Bezerra, PHG Lugão, and R Portugal. Quantum walk-based search algorithms with multiple marked vertices.

Physical Review A, 103(6):062202, 2021.
Jonathan H A Carvalho, Luciano S Souza, Fernando M Paula Neto, and Tiago A E Ferreira. Impacts of multiple

solutions on the lackadaisical quantum walk search algorithm. In Brazilian Conference on Intelligent Systems, pages
122–135. Springer, 2020.

Nikolajs Nahimovs, Raqueline A M Santos, and K R Khadiev. Adjacent vertices can be hard to find by quantum walks.
Moscow University Computational Mathematics and Cybernetics, 43(1):32–39, 2019.

Mason L Rhodes and Thomas G Wong. Quantum walk search on the complete bipartite graph. Physical Review A, 99
(3):032301, 2019.

Thomas G Wong. Faster search by lackadaisical quantum walk. Quantum Information Processing, 17(3):1–9, 2018.
Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum walks faster. arXiv preprint quant-

ph/0402107, 2004.
Mason L Rhodes and Thomas G Wong. Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum

Information Processing, 19(9):1–16, 2020.
Nikolajs Nahimovs. Lackadaisical quantum walks with multiple marked vertices. In International Conference on

Current Trends in Theory and Practice of Informatics, pages 368–378. Springer, 2019.
Jasmeet Singh and Mohit Singh. Evolution in quantum computing. In 2016 International Conference System Modeling

& Advancement in Research Trends (SMART), pages 267–270. IEEE, 2016.
Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information. AAPT, Cambridge, UK, 2002.
Noson S Yanofsky and Mirco A Mannucci. Quantum computing for computer scientists. Cambridge University Press,

2008.
David McMahon. Quantum computing explained. John Wiley & Sons, 2007.
Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Physical Review A, 48(2):1687, 1993.
Andris Ambainis, Artūrs Bačkurs, Nikolajs Nahimovs, Raitis Ozols, and Alexander Rivosh. Search by quantum walks

on two-dimensional grid without amplitude amplification. In Conference on Quantum Computation, Communication,
and Cryptography, pages 87–97. Springer, 2012.

Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum Information Processing, 11(5):
1015–1106, 2012.

Julia Kempe. Quantum random walks hit exponentially faster. arXiv preprint quant-ph/0205083, 2002.
Cristopher Moore and Alexander Russell. Quantum walks on the hypercube. In International Workshop on Randomiza-

tion and Approximation Techniques in Computer Science, pages 164–178. Springer, 2002.
Thomas G Wong. Grover search with lackadaisical quantum walks. Journal of Physics A: Mathematical and Theoretical,

48(43):435304, 2015.
Jonathan H. A. Carvalho, Luciano S Souza, Fernando M Paula Neto, and Tiago A E Ferreira. On applying the

lackadaisical quantum walk algorithm to search for multiple solutions on grids. arXiv preprint quant-ph/2106.06274,
2021.

Nikolajs Nahimovs and Raqueline AM Santos. Lackadaisical quantum walks on 2d grids with multiple marked vertices.
arXiv preprint arXiv:2104.09955, 2021.

12

51

Multi-self-loop Lackadaisical Quantum
Walk with Partial Phase Inversion

A preprint can be found at: https://arxiv.org/pdf/2305.01121

https://arxiv.org/pdf/2305.01121

MULTI-SELF-LOOP LACKADAISICAL QUANTUM WALK WITH
PARTIAL PHASE INVERSION

A PREPRINT

Luciano S. de Souza∗

Departamento de Estatística e Informática
Universidade Federal Rural de Pernambuco

Recife, Brasil
luciano.serafim@ufrpe.br

Jonathan H. A. de Carvalho
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brasil

jhac@cin.ufpe.br

Henrique C. T. Santos
Instituto Federal de Educação, Ciência e

Tecnologia de Pernambuco
Recife, Brasil

henrique.santos@recife.ifpe.edu.br

Tiago A. E. Ferreira
Departamento de Estatística e Informática

Universidade Federal Rural de Pernambuco
Recife, Brasil

tiago.espinola@ufrpe.br

November 18, 2024

ABSTRACT

The lackadaisical quantum walk, a quantum analog of the lazy random walk, is obtained by adding
a weighted self-loop transition to each state. Impacts of the self-loop weight l on the final success
probability in finding a solution make it a key parameter for the search process. The number of
self-loops can also be critical for search tasks. This article proposes the quantum search algorithm
Multi-self-loop Lackadaisical Quantum Walk with Partial Phase Inversion, which can be defined
as a lackadaisical quantum walk with multiple self-loops, where the target state phase is partially
inverted. In the proposed algorithm, each vertex has m self-loops, with weights l′ = l/m, where l is
a real parameter. The phase inversion is based on Grover’s algorithm and acts partially, modifying
the phase of a given quantity s < m of self-loops. On a hypercube structure, we analyzed the
situation where 1 ⩽ m ⩽ 30. We also propose two new weight values based on two ideal weights l
used in the literature. We investigated the effects of partial phase inversion in the search for 1 to 12
marked vertices. As a result, this proposal improved the maximum success probabilities to values
close to 1 in O(

√
(n+m) ·N), where n is the hypercube degree. This article contributes with a

new perspective on the use of quantum interferences in constructing new quantum search algorithms.

Keywords Quantum Computing · Quantum Interference · Quantum Walks · Quantum Search Algorithm · Lackadaisi-
cal Quantum Walk · Multiple Self-loops · Partial Phase Inversion

1 Introduction

Just as quantum interference plays an essential role in the development of quantum algorithms, for Shenvi et al.
[2003], quantum walks provide one of the most promising features, an intuitive framework for building new quantum
algorithms. Their pioneering paper designed a quantum search algorithm based on quantum walks. They demonstrated
that this quantum search algorithm could be used to find a marked vertex of a hypercube. Although they are distinct
algorithms, there are several similarities with Grover’s algorithm [Grover, 1996]. Both algorithms start in the state of
equal superposition over all states. They make use of Grover’s diffusion operator. They can be seen as a rotation in

∗R. Dom Manuel de Medeiros, s/n, Dois Irmãos – Recife, Pernambuco – Brasil

MSLQW with Partial Phase Inversion A PREPRINT

a two-dimensional subspace. They have the same running time. The measurement is performed at a specific time to
obtain the maximum probability of success. Both algorithms use an oracle that marks the target state with a phase of
−1, i.e., they use quantum interference to develop their quantum search algorithms.

Since then, some works have been developed to improve the capacity of the quantum search algorithm in the hypercube
[Potoček et al., 2009, Hein and Tanner, 2009]. The addition of self-loops at each vertex is part of many improvement
proposals for quantum search algorithms. Hoyer and Meyer [2009] used a directed walk on the line to produce an
algorithm with (N − 1) self-loops at each vertex, where N is the total number of vertices. In its turn, Wong [2015]
proposed a quantum analog of the classical lazy random walk, called the lackadaisical quantum walk - LQW. The
quantum walker has a chance to stay at the same vertex by introducing m integer self-loops at each vertex of the graph,
and its effects were investigated with Grover’s search algorithm. However, Wong [2017] proposed a modification that
reduced the number m to a single self-loop with a non-integer weight l.

Recently, some works have investigated the application of the lackadaisical quantum walk on the hypercube structure.
Rhodes and Rhodes and Wong [2020] showed that the ideal value for the self-loop weight in the search for a single
marked vertex is l = d/N , where d is the degree of the vertex and N is the number of nodes in the hypercube. Souza
et al. [2021] showed that the optimal self-loop weight value for searching a single marked vertex is not optimal for
searching multiple marked vertices on the hypercube. Thus, they defined a new value of l which is the value proposed
by Rhodes and Rhodes and Wong [2020] multiplied by the number of marked vertices k, resulting in l = (d/N) · k.

Although Souza et al. [2021] have obtained improvements in the search for multiple vertices in the hypercube by
proposing a new ideal weight value for the self-loop, in some cases, it is not possible to maintain the performance of
the quantum search algorithm using the LQW. The LQW’s original proposal used m self-loops with an integer weight
l, and later this number was reduced to a single self-loop with a non-integer weight. However, according to Rhodes
and Rhodes and Wong [2020], if the weight value l of the self-loop is an integer, it is equivalent to having several
unweighted self-loops. We can therefore suggest that there is a relationship between the weight value l and the number
m of self-loops.

Therefore, in the described scenario, it is possible to observe three aspects that were discussed, which can interfere
with the performance of the LQW. The first is quantum interference, which in practical terms, can be achieved with
the phase inversion of a target state. The second is the weight value of the self-loop, and the third is the number of
self-loops. Another aspect we must consider is the distribution of the weight value between the multiple self-loops.
Some authors use different strategies to define how the weights are distributed in the set of vertices.

In the work developed by Hoyer and Meyer [2009], the amplitude of each self-loop is the same, and they are grouped
into a single normalized state. Wang et al. [2017] proposed a model of adjustable self-loops controlled by a real
parameter in the coin operator. Rhodes and Rhodes and Wong [2019a] investigated the spatial search in the complete
bipartite graph, which can be irregular with N1 and N2 vertices in each partition. In this way, self-loops in each set of
vertices can have different weights l1 and l2, respectively. Rapoza and Rapoza and Wong [2021] defined a self-loop
weight value for marked vertices, while the remaining weights for unmarked vertices can be chosen randomly.

Based on the previous information and through experiments, we verified that using a single self-loop at each hypercube
vertex with a non-integer weight l is equivalent to using m self-loops where each self-loop has a non-integer weight
l/m. Considering Grover’s search algorithm used in the LQW, in practical terms, after executing the part of the
quantum system responsible for detecting the target state, a phase rotation is applied, i.e., by linearity, it inverts the
phase of all the base states related to the target state and applies the diffusion transformation.

According to McMahon [2007], quantum interference plays an important role in the development of quantum algo-
rithms. There are two types of interference, positive (constructive) and negative (destructive), in which the probability
amplitudes add constructively or the probability amplitudes add destructively, respectively. For Grover [1996], which
developed an algorithm based on quantum interference, the operation that results in the phase shift of the target state
is one of the procedures that form the basis of quantum mechanics algorithms and makes them more efficient than
classical analog algorithms.

However, as seen previously, in some cases, it is impossible to maintain the performance of the LQW. Since the m
self-loops are redundant, the proposal of this work is a different way of performing the phase inversion process. We
suggest modifying Grover’s search algorithm to make possible the partial inversion of the base states that represent
the m self-loops of the marked vertices. Therefore, we propose the Multi-self-loop Lackadaisical Quantum Walk with
Partial Phase Inversion - MSLQW-PPI. We will show and analyze the effects of using multiple real-valued weighted
self-loops at each vertex of an n-dimensional hypercube with Grover’s search algorithm using a different strategy in
the phase inversion operation that only acts on s < m self-loops.

2

MSLQW with Partial Phase Inversion A PREPRINT

The LQW algorithm highly depends on the self-loop weight value. The ideal weight composition in several struc-
tures, including the hypercube, considers the vertex degree, the total number of vertices, and the number of marked
vertices [Wong, 2018, Rhodes and Wong, 2019b, Giri and Korepin, 2020, Carvalho et al., 2023]. Therefore, based on
the weights proposed by Rhodes and Rhodes and Wong [2020] and Souza et al. [2021] for the use of a single self-loop,
we also suggest two new weights for the use of multiple self-loops that explore this relationship between vertex degree,
the total number of vertices and the number of marked vertices. We added an integer exponent α equal to 2, restricting
the analysis to this value as the initial choice. In this way, we can analyze the performance of the quantum walk in the
hypercube, maintaining the ideal weights’ composition, just by modifying its scale.

The main contributions of this work are summarized as follows. We present a new quantum search algorithm based
on lackadaisical quantum walks. For this, we revisit the use of multiple self-loops per vertex and propose a partial
phase inversion of the target states based on a modification in Grover’s oracle. We formulate two new weight values
l, such that l = n2/N and l = (n2/N) · k, where n2 is the degree of the vertex in a n-regular structure 2 times, N is
the number of vertices, and k is the number of marked vertices. Each m self-loop is weighted in the form l′ = l/m.
Finally, with this approach, we were able to increase the maximum success probabilities to values close to 1.

This paper is organized as follows. In Section 2, we present some concepts about quantum walks in the hypercube.
In Section 3, we present the proposal for this work. In Section 4, the experiments are defined. Section 5 presents the
results and discussion. Finally, Section 6 contains the conclusions.

2 Lackadaisical quantum walk on the hypercube

Quantum walks are the quantum counterpart of classical random walks. They are an advanced tool that provides one
of the most promising features, an intuitive framework for building new quantum algorithms [Aharonov et al., 1993,
Shenvi et al., 2003, Ambainis et al., 2012]. The evolution of the discrete-time quantum walk occurs by successive
applications of a unitary evolution operator U that operates in the Hilbert space,

H = HC ⊗HS (1)

where the coin space HC is the Hilbert space associated with a quantum coin, and the walker space HS is the Hilbert
space associated with its position representation. The evolution operator U is defined as follows,

U = S(C ⊗ IN) (2)

where S is the shift operator that acts in the walker’s space based on the state of the coin. IN is the identity matrix,
and the unitary matrix C is the coin operator [Shenvi et al., 2003]. The evolution equation represented by a quantum
walk at time t is given by

|Ψ(t)⟩ = U t |Ψ(t = 0)⟩ . (3)

In general, the study of quantum walks needs a structure to represent the time evolution of the walker. It is possible
to use many different structures, such as complete and johnson’s graphs [Wong, 2015, 2017, Zhang et al., 2018], grids
[Saha et al., 2022, Carvalho et al., 2023], hypercubes [Rhodes and Wong, 2020, Souza et al., 2021], among others
[Rhodes and Wong, 2019a, Tanaka et al., 2022, Qu et al., 2022]. Here, it was chosen the hypercube structure. The
hypercube was used by Shenvi et al. [2003] as a temporal evolution structure to propose in his pioneering work a search
algorithm based on quantum walks. Furthermore, a quantum walk on the hypercube can be reduced to a quantum walk
on a line which reduces its complexity. The n-degree hypercube is an undirected graph with 2n nodes, where each
node can be described by a binary string of n bits. In this way, two nodes x⃗ and y⃗ in the hypercube are adjacent if
x⃗ and y⃗ differ by only a single bit, i.e., if |x − y| = 1, where |x − y| is the Hamming distance between x⃗ and y⃗
[Venegas-Andraca, 2012].

Let us define the Hilbert space associated with the quantum walk on the hypercube. According to Equation 1, the
Hilbert space associated with the quantum coin space is HC , and the Hilbert space associated with the walker’s
position is HS . Then, the Hilbert space associated with the quantum walk in the hypercube is

H = Hn ⊗H2n (4)

3

MSLQW with Partial Phase Inversion A PREPRINT

where Hn is the Hilbert space associated with the quantum coin space, and H2n is the Hilbert space associated with
nodes in the hypercube, which represents the walker’s position. In an n-dimensional hypercube, the i directions define
the states of the coin and can be labeled by the n base vectors {|0⟩ , |1⟩ , . . . , |n− 1⟩}. Each one of these n base vectors
can be represented by {|e0⟩ , |e1⟩ , . . . , |en−1⟩}, where ei is a binary string of n bits with 1 in the i-th position [Kempe,
2002, Shenvi et al., 2003]. The shift operator S, described in Equation 5, acts mapping a state |i, x⃗⟩ → |i, x⃗⊕ e⃗i⟩.

S =
n−1∑

i=0

∑

x⃗

|i, x⃗⊕ e⃗i⟩ ⟨i, x⃗| (5)

The pure quantum walk (without search) evolves by repeated applications of the evolution operator described in Equa-
tion 2, where C is Grover’s “diffusion” operator on the coin space, and it is given by

C = 2 |sC⟩ ⟨sC | − In (6)

where In is the identity operator, and |sC⟩ is the equal superposition over all n directions [Moore and Russell, 2002,
Shenvi et al., 2003], i.e.,

|sC⟩ = 1√
n

n−1∑

i=0

|i⟩ . (7)

Now, consider the quantum walk with search. A query to the “Grover oracle”, described in Equation 8, is included in
each step of the quantum walk.

U ′ = U · (In ⊗Q) (8)

where Q = IN − 2 |ω⟩ ⟨ω|, and |ω⟩ is the marked vertex. The initial state of the quantum walk in the hypercube is
defined according to Equation 9 as an equal superposition for all N nodes and n directions.

|Ψ(t = 0)⟩ = 1√
n

n−1∑

i=0

|i⟩ ⊗ 1√
N

∑

x⃗

|x⃗⟩ (9)

Finally, we will define the lackadaisical quantum walk in the hypercube. The lackadaisical quantum walk is a quantum
analog of the lazy random walk. This quantum algorithm is obtained by adding at least one self-loop to each graph
vertex [Wong, 2015]. According to the definition presented by Høyer and Yu [2020], considering an n-regular graph
with a single marked vertex, by adding a self-loop of weight l to each vertex, the coined Hilbert space becomes

Hn+1 = {|e0⟩ , |e1⟩ , . . . , |en−1⟩ , |⟲⟩},
where |⟲⟩ represents the self-loop. Thus weighted self-loop accounting is done by modifying Grover’s coin presented
in Equation 6, as follows

C = 2 |sC⟩ ⟨sC | − I(n+1) (10)

where

|sC⟩ = 1√
n+ l

(
√
l |⟲⟩+

n−1∑

i=0

|i⟩
)
. (11)

4

MSLQW with Partial Phase Inversion A PREPRINT

3 Article proposal

Let us present the proposal for this work, the Multi-self-loop Lackadaisical Quantum Walk with Partial Phase Inversion
(MSLQW-PPI). It is an alternative to exploring multiple non-integers self-loops in a way that can improve the results
of the lackadaisical quantum walk. Considering an n-regular hypercube, we add m self-loops with weights l′ at each
vertex, i.e., the amplitude of each self-loop is weighted by

√
l′. Therefore, the Hilbert space associated with the coin

space becomes

Hn+m = {|e0⟩ , |e1⟩ , . . . , |en−1⟩ , |⟲0⟩ , |⟲1⟩ , . . . , |⟲m−1⟩}.

To account for the m weighted self-loops, a new modification was made to Grover’s coin described in Equation 10, as
follows,

C = 2 |sC⟩ ⟨sC | − I(n+m) (12)

where

|sC⟩ = 1√
n+ l

√

l′
m−1∑

j=0

|⟲j⟩+
n−1∑

i=0

|i⟩

 (13)

and l′ = l/m. In this way, according to Equation 13, we consider that the weight l has its value equally distributed to
the m self-loops. The MSLQW-PPI system in the hypercube starts as follows,

|Ψ(t = 0)⟩ = |sC⟩ ⊗ 1√
N

∑

x⃗

|x⃗⟩ . (14)

Substituting Equation 13 into Equation 14 and applying the expansions, we obtain the initial state described in Equa-
tion 15.

|Ψ(t = 0)⟩ =
√
l′√

n+ l ×
√
N

m−1∑

j=0

∑

x⃗

|⟲j , x⃗⟩+
1√

n+ l ×
√
N

n−1∑

i=0

∑

x⃗

|i, x⃗⟩ (15)

To properly explore those multiple self-loops at each vertex, we propose a modification to Grover’s oracle described
previously. Note that, in Equation 8, a query (In ⊗ Q) is included at each step of the quantum walk, where Q =
IN − 2 |ω⟩ ⟨ω| and ω is the marked vertex. Thus, by linearity, when we apply the oracle to all |i⟩ |x⃗⟩ states of the
superposition of vertices and edges, there are two possibilities. The first possibility is that x⃗ is not the target state, i.e.,
ω ̸= x⃗. As ⟨∗⟩ωx⃗ = 0, the state stays unchanged. The second possibility is that x⃗ is the target state, i.e., ω = x⃗. In
this case, as ⟨∗⟩ωx⃗ = 1, we have the phase inversion of the target state.

As can be seen, this oracle depends exclusively on the vertex in question. The edge is not considered for state phase
inversion. All states associated with the vertex in question, independent of the edge, are also inverted. Here, we
propose a partial inversion of the states related to the marked vertices. According to Rhodes and Wong [2020], the
number of self-loops is a parameter that adjusts the probability of a walker staying put. The idea here is to be able to
invert the phase of a target self-loops ⟲τ and all edges that are not self-loops ϵ of the hypercube of a target vertex and
investigate their effects. Inspired by Hoyer and Meyer [2009], we identify each edge of the hypercube by assigning a
basis vector, as follows, |⟲j , x⃗⟩ and |i, x⃗⟩, where 0 ⩽ j ⩽ m − 1 and 0 ⩽ i ⩽ n − 1. Hence, each state |x⟩, which
represents a walker’s position, is a linear combination of the states,

|x⟩ = |⟲0, x⃗⟩+ · · ·+ |⟲m−1, x⃗⟩+ |0, x⃗⟩+ · · ·+ |n− 1, x⃗⟩ (16)

which denotes the superposition of all edges [Yu, 2018]. In the case where |x⟩ contains the target state, it will have the
phase of the components |⟲τ , x⃗⟩ and |ϵ, x⃗⟩ changed. It requires an oracle that identifies the state’s components. Con-
sider, again, Grover’s oracle described in Equation 8. The proposed modification of the oracle described in Equation
17 makes it possible to identify the components of the target state.

5

MSLQW with Partial Phase Inversion A PREPRINT

Q = I(n+m)·N − 2
∑

ω

n−1∑

ϵ=0

|ϵ, ω⟩ ⟨ϵ, ω| − 2
∑

ω

∑

τ

|⟲τ , ω⟩ ⟨⟲τ , ω| (17)

where |ω⟩ represents the marked vertex, ϵ represents an edge that is not a self-loop, and ⟲τ are the self-loops that
will have their phases inverted. In this way, Q acts in the coin and vertex space described in Equation 1, contrary to
Equation 8, where Q acts in the vertex space. Consider an arbitrary state |x⟩. When applying the proposed oracle, the
phase of the components that represent their edges is considered individually. Considering Equation 18, at each step
of the quantum walk an oracle query is applied to each edge of the state by linearity.

Q |x⟩ = Q |⟲0, x⃗⟩+Q |⟲1, x⃗⟩+ · · ·+Q |⟲m−1, x⃗⟩+Q |0, x⃗⟩+Q |1, x⃗⟩+ · · ·+Q |n− 1, x⃗⟩ (18)

Here also there are two possibilities. The first possibility is that |x⟩ does not contain the target state. The second
possibility is that |x⟩ contains the target state. Finally, it is necessary to define the self-loop to have its phase inverted.
Here, the phase of s self-loops is inverted, where experiments with 1 ⩽ s ⩽ m were done. The simpler situation
where only one single self-loop is inverted can be used to illustrate the process. Consider the states |⟲τ=j⟩ as the
target self-loops without loss of generality. Therefore, the description of the oracle is done as follows,

Q = I(n+m)·N − 2
∑

ω

n−1∑

ϵ=0

|ϵ, ω⟩ ⟨ϵ, ω| − 2
∑

ω

∑

τ

|⟲τ=j , ω⟩ ⟨⟲τ=j , ω| (19)

For the case where |x⟩ does not contain the target state, the phase of the states remains unchanged. For the case
where |x⟩ contains the target state, we have the partial phase inversion of the components |⟲τ=j , x⃗⟩ and |i, x⃗⟩, while
the components |⟲τ ̸=j , x⃗⟩ stays unchanged. Additional details on the application of the new oracle in three possible
scenarios can be found in Appendix A.

4 Experiment setup

According to the definitions of the hypercube, two marked vertices are adjacent if the Hamming distance between
them is 1. A set of non-adjacent marked vertices have a Hamming distance of at least 2 from any other marked vertex,
i.e., they are mutually non-adjacent. In the experiments performed in this paper, we consider only the scenario where
the marked vertices are non-adjacent. The search for adjacent marked vertices constitutes a separate scenario and will
not be addressed in this work.

Experiments were performed to analyze the behavior of a Lackadaisical Quantum Walk with multiple self-loops at
each vertex, where, the quantity s (1 ⩽ s ⩽ m) of self-loops is inverted. The case s = m is the conventional oracle
operation situation. Initially, we used the weight values proposed by Rhodes and Wong [2020] and Souza et al. [2021].
These experiments were also made for the weight values proposed in this work. To evaluate the relative dispersion
behavior of the mean success probability, we used Pearson’s coefficient of variation (the ratio between the standard
deviation and the mean value).

4.1 Definition of vertex sets and simulations

To determine how the simulations are performed, it is necessary to define how the marked vertices are divided. For each
number of marked vertices k, γ simulations are performed varying the position of the k marked vertices. Therefore,
the marked vertices are divided into groups of Mk,γ samples. Here we define 1 ⩽ k ⩽ 12 and γ = 100. In this way,
we have a set of twelve hundred samples. This set is divided into twelve groups of one hundred samples as follows:
M1,100,M2,100,M3,100, · · · ,M12,100. Each sample was made without replacement following a uniform distribution,
i.e., each one of them has k distinct vertices. For each group of one hundred samples, we fixed the k number of marked
vertices and vary their location, for example, when k = 2, as shown below,

M2,100 = [{254, 1498}1, {969, 3520}2, . . . , {410, 1121}100].
The values shown, for example, {254, 1498}1, are the 1st sample from a total of 100 with 2 marked vertices, where
its binary representation is {000011111110, 010111011010}1 in the hypercube. In this way, for every new group of

6

MSLQW with Partial Phase Inversion A PREPRINT

Table 1: Client machine settings.

Node System RAM System Processor

Node 1 and 2 32 GB Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz
Node 3 8 GB Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
Node 4 and 5 32 GB Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
Node 6 16 GB Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

simulations Mk,γ , k · 100 non-adjacent vertices are marked and divided into 100 samples of k vertices. Each one of
these samples with k vertices is a computational experiment. For instance, k = 3

M3,100 = [{3034, 1616, 2438}1, {2059, 2745, 3686}2, . . . , {3017, 3484, 1773}100].
As a first investigation, the experiments employ s = 1 inverted self-loop. Experiments were also performed for full-
phase inversion where s = m. In the second investigation, the experiments employ 2 ⩽ s < m. Therefore, 1 ⩽ s ⩽ 30
and 1 ⩽ m ⩽ 30. For each sample Mk,γ , all possible combinations of s ⩽ m are done. For example, when m = 1,
then s = 1. When m = 2, then s = 1, and s = 2, and so on until m = 30, the s = {1, 2, ·, 30}. This way, a total of
558000 simulations were performed. A simulation stops after each quantum walk has reached the number of iterations
necessary to obtain the maximum value of the probability amplitude in the k marked vertices. Considering s = 1 and
m = 1 we have the same conditions as Rhodes and Wong [2020] and Souza et al. [2021], i.e. the use of a single
self-loop.

4.2 Hardware and software setup

The simulations were performed using the Parallel Experiment for Sequential Code - PESC [Santos et al., 2023]. The
PESC is a computational platform for distributing computer simulations on the resources available on a network by
packaging the user code in containers that abstract all the complexity needed to configure these execution environments,
allowing any user to benefit from this infrastructure. All client nodes that participated in the simulations use the Ubuntu
18.04.6 LTS (Bionic Beaver) operational system and have an HD of 500 GB. Other machine settings are shown in
Table 1.

The PESC platform provides a web interface where the user configures a request to execute a simulation. In this request,
the user can inform the number of times the simulation must be repeated. Each instance of the simulation receives
via parameter the instance identification, called a rank. The rank is used to initialize variables and parameterize other
processes. The programming language used to write the algorithms was Python 3.7.

After receiving the request, the PESC platform distributes the simulations to the available client nodes. The distribution
is based on each client’s workload, where each client’s performance factor is informed when connecting to the server.
Before starting the execution, each client creates and configures the environment necessary to run the received code.
The user informs the execution environment needs at the request moment.

Using the platform simplified the simulation execution process as it manages the status and life cycle of the request,
restarting simulation instances in case of failure on any of the clients, with the possibility of moving the instance to
another client node depending on the type of failure detected.

All this was very important considering the nature of the proposed study due to the long time required to finish all
simulations and then collect the data that supports this study’s results. This tool was developed for the instrumentation
and optimization of computational studies conducted by Prof. Tiago A. E. Ferreira’s research group.

5 Results and discussion

Initially, our discussions focus on cases where only one self-loop is inverted, i.e. s = 1 and 1 ⩽ m ⩽ 30, and are
compared with approaches where all self-loops are inverted or s = m. Fig. 1 shows the success probabilities for the
lackadaisical quantum walk and the MSLQW-PPI in the hypercube for the weights l = n/N and l = (n/N) · k.

Fig. 1a shows the probability of success for the full phase inversion and Fig. 1b shows the probability of success for
the partial phase inversion, both for weight values l = n/N . When we invert the phase of all self-loops at each marked
vertex, it is equivalent to using a single weighted self-loop at each marked vertex on the hypercube [Wong, 2015]. In
these cases, the results are similar to those obtained in works by Rhodes and Wong [2020] with a probability of success
of approximately 99% to search for one marked vertex.

7

MSLQW with Partial Phase Inversion A PREPRINT

(a) Total Inversion l = n/N (b) Partial Inversion l = n/N

(c) Total Inversion l = (n/N) · k (d) Partial Inversion l = (n/N) · k

Figure 1: The success probability of the Lackadaisical Quantum Walk with full phase inversion in Figures (a) and (c),
and the MSLQW-PPI in Figures (b) and (d) in the hypercube to search for non-adjacent marked vertices with n = 12
and N = 4096 vertices. Figures (a) and (b) for the weight value l = n/N , proposed by Rhodes and Wong [2020].
Figures (c) and (d) for the weight value l = (n/N) · k, proposed by Souza et al. [2021]

Fig. 1c shows the probability of success for the full phase inversion and Fig. 1d shows the probability of success for
the partial phase inversion, both for weight values l = (n/N) · k. In Fig. 1c, where the full phase inversion occurs, the
probability of success stays at values close to 1, even using multiple self-loops, with a small variation if we observe
its coefficient of variation in Fig. 2c. As we can see in Fig. 1d, the probabilities of success present results similar to
those obtained by Souza et al. [2021].

Fig. 2 shows the coefficient of variation (σw/w̄ – standard deviation normalized by the mean value) to measure the
level of dispersion presented in the results obtained with the total and partial phase inversion of the results presented
in Fig 1. The level of dispersion presented in the results obtained with the partial phase inversion in Figures 2b and
2d describes a behavior where the maximum probabilities of success present a smaller coefficient of variation. Unlike
the results presented in Fig. 2a obtained with full inversion where the level of dispersion presented is greater for lower
probabilities. Analyzing Fig. 2c, although the result for the coefficient of variation appears stable, there are subtle
variations concerning the maximum probabilities of success presented in Fig. 1c.

As we see in Fig. 1, the weight values proposed by Rhodes and Wong [2020] and Souza et al. [2021] are ideal to use in
approaches with a single self-loop at each vertex. Therefore, for our approach, it is necessary to define the best weight
value for using multiple self-loops. Most of the weights defined in previous works for structures such as a complete
graph, hypercube, one-dimensional grid, and two-dimensional grid consider three main parameters: the vertex degree,
the total number of vertices, and the number of marked vertices. Two weight values were already defined by Rhodes
and Wong [2020] and Souza et al. [2021] as ideal for searching for one and multiple marked vertices in the hypercube,

8

MSLQW with Partial Phase Inversion A PREPRINT

(a) Total Inversion l = n/N (b) Partial Inversion l = n/N

(c) Total Inversion l = (n/N) · k (d) Partial Inversion l = (n/N) · k

Figure 2: The results for coefficients of variation. Their values are represented in percentage terms. (a) and (b) weight
value l = n/N . (c) and (d) weight value l = (n/N) · k.

respectively: l = n/N and l = (n/N) · k, where n is the degree of the vertices, N the number of vertices, and k the
number of marked vertices.

The idea here is to propose two new weight values based on those previous ideal weight values used to search for one
and multiple vertices in the hypercube. We introduce a new parameter in the weight composition: the exponent in the
numerator. Considering that the weights l = n/N and l = (n/N) · k have an exponent equal to 1 in the parameter n1,
we can consider other values for this exponent. We can modify the scale of weight values through this new exponent.
So we have a new proposal for the two weights

l =

(
n2

N

)
, and l =

(
n2

N

)
· k.

Fig. 3 shows the probability of success of the lackadaisical quantum walk with full phase inversion and MSLQW-PPI
using the two new weight values to search multiple marked vertices. More one time, the first column (Figures 3a
and 3c) presents the results for the full phase inversion and the second column (3b and 3d) the results for the partial
phase inversion to the simplest situation of s = 1 and 1 ⩽ m ⩽ 30.

Figures 3a and 3b show the maximum probability of success for the weight value l = n2/N . In the Fig. 3a, the
phase of all components of the target state representing the m self-loops is inverted. In this case, the probability of
success is affected reaching a maximum probability of approximately p ≈ 1 only when k = 11, 12. The Fig. 3b shows
the maximum probability of success for the partial inversion. In this case, we obtain success probabilities close to
1. For k = 2, 3, 4 the maximum success probability is reached (with m = 6, 4, 3) self-loops, respectively, and for
k = 5, 6, 7, 8 (with m = 2). Fig. 3c shows the maximum probability of success where the phase of all components of

9

MSLQW with Partial Phase Inversion A PREPRINT

(a) Total Inversion l = n2/N (b) Partial Inversion l = n2/N

(c) Total Inversion l = (n2/N) · k (d) Partial Inversion l = (n2/N) · k

Figure 3: The success probability of the Lackadaisical Quantum Walk with full phase inversion in Figures (a) and (c),
and the MSLQW-PPI in Figures (b) and (d) in the hypercube to search for non-adjacent marked vertices with n = 12
and N = 4096 vertices. Figures (a) and (b) for the weight value l = n2/N . Figures (c) and (d) for the weight value
l = (n2/N) · k.

the target state is inverted and Fig. 3d shows the maximum probability of success for the partial inversion, both for the
weight value l = (n2/N) · k. This scenario showed a considerable gain in the maximum probability of success from
p = 0.28 (with m = 1) to p ≈ 1 (with m = 12) self-loops to any number k of the marked vertices.

Figure 4 shows the coefficient of variation for the results described in Fig. 3. Analyzing the results, we observe a
different behavior between the complete and partial phase inversions. With the partial phase inversion, the small coef-
ficient of variation coincides with the maximum probabilities of success, however, with the complete phase inversion
the variation is also smaller but does not coincide with the maximum probabilities of success. Table 2 shows that in
most of the results applying partial phase inversion, there was an improvement in the maximum probability of success
and a smaller coefficient of variation.

Continuing the comparisons between the results obtained with the different weight values, again, we observed that it
was possible to increase the probability of success with more than one self-loop and partial phase inversion. Fig. 1d
shows the probability of success for the weight l = (n/N) · k with total phase inversion. Compared to the results
presented in Fig. 3d that shows the probability of success for the weight l = (n2/N)·k with partial phase inversion, the
probabilities of success are similar and close to 1, and what differs is the number of self-loops per vertex. In practical
terms, using a single self-loop in this scenario is better. However, it is important to note that there exists a relationship
between the weight and the number of self-loops per vertex. Note that the number of self-loops may change depending
on the weight value. In the case of Fig. 3d, the probability of success is maximized when the number of self-loops
increases to 12.

10

MSLQW with Partial Phase Inversion A PREPRINT

Table 2: Comparison between the probability of success and number of self-loops for two scenarios. The column for
Fig. 3a represents the results where the phase of all self-loops is reversed. The column for Fig. 3b is for the case where
the phase of only one self-loop is inverted. Both using the weight l = n2/N . The acronym cv means the coefficient
of variation.

Figures

3a 3b

k p m cv p m cv

2 0.48 1 5.234e-05 0.99 6 3.536e-04
3 0.64 1 1.050e-04 0.99 4 2.177e-04
4 0.75 1 1.922e-04 0.99 3 9.214e-05
5 0.83 1 9.214e-05 0.99 2 1.922e-04
6 0.88 1 2.177e-04 0.99 2 1.922e-04
7 0.92 1 8.130e-05 0.99 2 1.922e-04
8 0.95 1 3.536e-04 0.97 2 1.922e-04
9 0.97 1 2.477e-04 0.97 1 1.050e-04

(a) Total Inversion l = n2/N (b) Partial Inversion l = n2/N

(c) Total Inversion l = (n2/N) · k (d) Partial Inversion l = (n2/N) · k

Figure 4: The results for coefficients of variation. Their values are represented in percentage terms. (a) and (b) weight
value l = n2/N . (c) and (d) weight value l = (n2/N) · k.

11

MSLQW with Partial Phase Inversion A PREPRINT

Figure 5: The success probability of MSLQW-PPI for weight value l = (n2/N) · k for s = 2 inverted self-loops and
3 ⩽ m ⩽ 30.

Table 3: Comparison between probabilities of success for searching non-adjacent marked vertices and the number m
of self-loops. The results presented here refer to the search using partial phase inversion of the target state. From
k = 4 marked vertices, the success probabilities for weight l = n/N remain below p = 0.66, while for the other three
weight values, the probability of success stays above p = 0.99. The acronym cv means the coefficient of variation.

Self-loop weights

l = n/N l = (n/N) · k l = n2/N l = (n2/N) · k
k p m cv p m cv p m cv p m cv

2 0.887 1 1.643e-04 0.999 1 8.259e-05 0.999 6 5.234e-05 0.999 12 2.810e-04
3 0.750 1 7.037e-04 0.999 1 1.144e-04 0.999 4 1.050e-04 0.999 12 2.095e-04
4 0.663 1 3.882e-03 0.999 1 1.221e-04 0.998 3 1.922e-04 0.999 12 6.324e-04

Finally, let us compare the results obtained from the partial inversion using all four weights. The results presented in
Figures 1b and 1d show that the weights proposed by Rhodes and Wong [2020] and Souza et al. [2021], l = n/N and
l = (n/N) ·k are not the ideal weights for MSLQW - PPI. However, with the use of the weights proposed in this work,
l = n2/N and l = (n2/N) · k, we achieved the best results. We highlight the weight value l = (n2/N) · k. With
this weight value, we obtained a stable behavior in most of the results. Table 3 shows the results of this comparison
for the probability of success, number of self-loops, and coefficient of variation for all weights used in the MSLQW -
PPI. Note that by modifying the weight scale and using various self-loops and partial phase inversion, it is possible to
increase the probability of success.

Now, our discussions focus on cases where more than one self-loop is inverted. Preliminary results indicate that the
phase inversion of a single self-loop ⟲τ=j is sufficient to obtain the results presented in this work. However, the results
also showed that it is possible to achieve maximum success probabilities close to 1 by inverting 1 < s < m self-loops.

The results of the experiments show that as the number of inverted self-loops s increases, the number of self-loops
m needed to achieve maximum success probabilities p ≈ 1 also increases. However, it is also possible to find the
required number of self-loops m to achieve maximum success probabilities close to 1.

The quantity of m is calculated as follows: m = s · n, where s is the number of self-loops with its phases inverted,
and n is the degree of the hypercube. New experiments were performed to confirm this hypothesis. Fig. 5 shows the
result of MSLQW-PPI for 2 ⩽ s ⩽ 5, and Fig. 6 shows the result of MSLQW-PPI for s = 2, 3, 4, 5. For the number of
inverted self-loops s = 2, 3, 4, 5 and n = 12, m = 24, 36, 48, 60 self-loops were needed to achieve maximum success
probabilities.

To obtain the complexity of the proposed algorithm, two analyses were performed. The first analysis is about knowing
how the runtime complexity behaves as N = 2n is changed. The second analysis is about knowing how the runtime
complexity behaves as m self-loops are added at each vertex of the hypercube. In both analyses, the weight l =
(n2/N) · k was used. Fig. 7 shows the results of the quantum walk applied to eleven hypercubes of degrees n =

12

MSLQW with Partial Phase Inversion A PREPRINT

(a) s = 3,m = 36 (b) s = 4,m = 48

(c) s = 5,m = 60

Figure 6: The success probability of MSLQW-PPI for weight value l = (n2/N) · k. In Figures (a), (b) and (c)
s = 3, 4, 5 and 4 ⩽ m ⩽ 60, respectively.

{10, ...20} respectively. Fig. 7a presents the results obtained using only one self-loop, and Fig. 7b shows the results
obtained with the MSLQW-PPI.

Considering the use of a single self-loop at each vertex of the hypercube we have a cost of square root. The adjustments
show that the running time t is

t = c1 ·
√

((n+ m) ·N)c2 + c3,

where c1, c2 and c3 ∈ R. Then, numerical simulations suggest that the running time is O(
√

((n+m) ·N). This also
occurs when using multiple self-loops and partial phase inversion. Maximum success probabilities stay close to 1 as n
changes. Note that when we fix the number of self-loops the running time of the algorithm does not on the dimensions
of the hypercube. The fit curves are

ta = 0.1408 ·
√
((n+ m) ·N)0.873 + 52.0675

and

tb = 0.2105 ·
√

((n+ m) · N)0.9299 + 53.0933.

Where ta is the cost for simulations with only one self-loop – Fig. 7a, and tb is the cost of simulation with the best
self-loop quantity (between 1 to 30) for each hypercube size – Fig. 7b.

Once the number of vertices of the hypercube is defined, the complexity is logarithmic as we can see. Fig. 8 shows
the results of the MSLQW-PPI applied to five hypercubes of degrees n = {12, ...16} respectively. On each of these

13

MSLQW with Partial Phase Inversion A PREPRINT

(a) One self-lop. (b) Multiple self-loops.

Figure 7: The time complexity of the algorithm relative to the size of the hypercube. The solid red line represents the
estimated curve and the blue dots are the numerical simulation values of the quantum walk.

Table 4: Algorithm complexity adjustments, m is the number of self-loops.

c1 · log ((n+m) ·N + c2) + c3
n c1 c2 c3

12 11.6237 -49296.2873 -28.8548
13 17.0371 -105453.4444 -81.3999
14 23.5898 -227612.0627 -148.5875
15 34.2267 -484336.2147 -268.0318
16 49.4194 -1024918.6020 -451.1252

hypercubes, thirty quantum walks were performed. The results show how many times the evolution operator needs to
be applied to obtain the maximum probability of success concerning the number of self-loops for each of the hypercube
sizes. The adjustments show that the running time t is

t = c1 · log ((n+m) ·N + c2) + c3,

where c1, c2 and c3 ∈ R. Then, numerical simulations suggest that the running time is O(log ((n+ m) ·N)), where
n is a constant representing the dimension of the hypercube in use, m is the number of self-loops, and N is also a
constant representing the total number of vertices of the hypercube. The run times are shown in Table 4. However, if
all constants are discarded, the computational cost for this situation can be approximated to O(log (m)).

6 Conclusions

The lackadaisical quantum walk has a strong dependence on the self-loop weight value. We can see this fact in the
results presented in all figures. For the cases where the phases of all self-loops are flipped, using a single self-loop per
vertex is better. We can affirm the same for the results shown in Fig. 1.

When Wong [2015] proposed the lackadaisical quantum walk, he included m integer self-loops at each vertex in the
complete graph, which according to Rhodes and Rhodes and Wong [2020] is equivalent to having m unweighted self-
loops. However, Wong [2017] redefined the lackadaisical quantum walk, where each vertex with m integer self-loops
can be reduced to a quantum walk where each vertex has a single self-loop of real weight l. Note that the number of
self-loops and the weight value l are the main characteristics of this quantum walk. Our strategy differs in that we
apply partial phase inversion and consider a real-valued weight l and equally distribute it in m self-loops in each vertex,
i.e., m self-loops of non-integer weight value. In addition to using the two existing weight values in the literature to
perform our experiments, we can contribute to the proposal of two new weight values. As the vertex degree is one of
the parameters used in many works to define the weights assigned to self-loops, we suggest a modification that adds
an exponent 2 to the numerator.

14

MSLQW with Partial Phase Inversion A PREPRINT

(a) (b) (c)

(d) (e)

Figure 8: The algorithm’s time complexity concerning the number of self-loops at each vertex. The solid lines repre-
sent the estimated curves. The points are the values from numerically simulating the quantum walk. For each figure,
n is a constant.

Quantum interference is essential in developing quantum algorithms [McMahon, 2007]. The interference caused by
the phase inversion operation, jointly with the average inversion operation, amplifies the target states’ amplitudes. It
allows Grover’s search algorithm a certain probability of finding the desired state [Grover, 1996]. The self-loops are
redundant elements within the structure that compose the states of the quantum system.

When we interfered jointly by flipping the phase of the m self-loops, making them indistinguishable, we saw that
it was equivalent to using a single self-loop. However, when we invert the phase of one of the m self-loops, we
empirically observe that the behavior caused by the constructive and destructive interference between the m self-loops
are analogous to those observed between the states that represent the vertices as a whole, i.e., most of the energy of
the m self-loops is retained in the phase-inverted self-loop. The results indicate that the phase inversion of a single
self-loop ⟲τ=j is sufficient to obtain the results presented in this work. However, it is possible to find maximum
success probabilities close to 1 by inverting 1 < s < m self-loops and using a total of m = s ∗ n self-loops.

To obtain the average behavior based on the relative position of the marked vertices, each simulation was performed on
a sample that contains a number k of distinctly marked vertices, that is, without replacement. Thus, verifying whether
the relative position of non-adjacent marked vertices influences the results is possible. According to the results, the
relative position of non-adjacent marked vertices does not significantly affect considering a numerical precision of
four digits. Furthermore, the coefficient of variation indicates that the number m of self-loops and the number k of
marked vertices influence the results. We used the coefficient of variation to analyze the results’ dispersion level. We
observe that for MSLQW-PPI when we have the slightest standard deviations, the maximum probabilities of success
scale to values close to 1. The percentage variations around the mean are not significant. However, the behavior is
stable for MSLQW-PPI, where there are slight variations. The results are more influenced by the number of marked
vertices and the number of self-loops than by the relative position of the non-adjacent marked vertices. As we can see
from the results, the multiple self-loops are an essential tool to improve the success probability of searching multiple
marked vertices on the hypercube. Parameters such as weight value, weight distribution strategies, and phase inversion
operation contributed to the results of this work.

In this work, the marked vertices are all non-adjacent. According to Souza et al. [2021], the type of marked vertices
can interfere with the result of the quantum walk on the hypercube. Therefore, as a supplementary work, we have used
the MSLQW-PPI to search for multiple adjacent marked vertices on the hypercube. In this sense, some preliminary

15

MSLQW with Partial Phase Inversion A PREPRINT

results can be found in the pre-print [Souza et al., 2023]. We also intend to apply this methodology to evaluate the
MSLQW-PPI in other d-regular structures, for example, the Johnson graph [Peng et al., 2024]. We intend to analyze
other exponent values α for the composition of the weights l = {nα/N, (nα/N) · k}, including real values, i.e.,
{α ∈ R | α ̸= 1}. It is possible to use an evolutionary search algorithm to define the best exponent α value capable
of maximizing the probability of success and minimizing the number of self-loops influencing the current proposal.
We intend to propose other strategies to distribute weight values, such as providing distinct self-loop weight values for
marked vertices. Another possible path for deeper investigation is to consider the partial inversion of edges i that are
not self-loops. Furthermore, proposing a variation of Grover’s search algorithm could also be a promising direction
for future efforts.

Acknowledgments

Acknowledgments to the Science and Technology Support Foundation of Pernambuco (FACEPE)- Brazil, The Brazil-
ian National Council for Scientific and Technological Development (CNPq), and the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of
this research.

References
Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algorithm. Physical Review A, 67

(5):052307, 2003. doi:https://doi.org/10.1103/PhysRevA.67.052307.

Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual
ACM symposium on Theory of computing, pages 212–219, 1996. doi:https://doi.org/10.1145/237814.237866.

V Potoček, Aurél Gábris, Tamás Kiss, and Igor Jex. Optimized quantum random-walk search algorithms on the
hypercube. Physical Review A, 79(1):012325, 2009. doi:https://doi.org/10.1103/PhysRevA.79.012325.

Birgit Hein and Gregor Tanner. Quantum search algorithms on the hypercube. Journal of Physics A: Mathematical
and Theoretical, 42(8):085303, 2009. doi:https;//doi.org/10.1088/1751-8113/42/8/085303.

Stephan Hoyer and David A Meyer. Faster transport with a directed quantum walk. Physical Review A, 79(2):024307,
2009. doi:https://doi.org/10.1103/PhysRevA.79.024307.

Thomas G Wong. Grover search with lackadaisical quantum walks. Journal of Physics A: Mathematical and Theoret-
ical, 48(43):435304, 2015. doi:https://doi.org/10.1088/1751-8113/48/43/435304.

Thomas G Wong. Coined quantum walks on weighted graphs. Journal of Physics A: Mathematical and Theoretical,
50(47):475301, 2017. doi:https://doi.org/10.1088/1751-8121/aa8c17.

Mason L Rhodes and Thomas G Wong. Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum
Information Processing, 19(9):1–16, 2020. doi:https://doi.org/10.1007/s11128-020-02841-z.

Luciano S Souza, Jonathan H A Carvalho, and Tiago A E Ferreira. Lackadaisical quantum walk in the hypercube to
search for multiple marked vertices. In André Britto and Karina Valdivia Delgado, editors, Brazilian Conference on
Intelligent Systems, pages 249–263, Cham, 2021. Springer International Publishing. doi:https://doi.org/10.1007/978-
3-030-91702-9_17.

Huiquan Wang, Jie Zhou, Junjie Wu, and Xun Yi. Adjustable self-loop on discrete-time quantum walk and its applica-
tion in spatial search. arXiv preprint, 2017. doi:https://doi.org/10.48550/arXiv.1707.00601.

Mason L Rhodes and Thomas G Wong. Quantum walk search on the complete bipartite graph. Physical Review A, 99
(3):032301, 2019a. doi:https://doi.org/10.1103/PhysRevA.99.032301.

Jacob Rapoza and Thomas G Wong. Search by lackadaisical quantum walk with symmetry breaking. Physical Review
A, 104(6):062211, 2021. doi:https://doi.org/10.1103/PhysRevA.104.062211.

David McMahon. Quantum computing explained. John Wiley & Sons, Hoboken, New Jersey, 2007.

Thomas G Wong. Faster search by lackadaisical quantum walk. Quantum Information Processing, 17(3):1–9, 2018.
doi:https://doi.org/10.1007/s11128-018-1840-y.

Mason L Rhodes and Thomas G Wong. Search by lackadaisical quantum walks with nonhomogeneous weights.
Physical Review A, 100(4):042303, 2019b. doi:https://doi.org/10.1103/PhysRevA.100.042303.

Pulak Ranjan Giri and Vladimir Korepin. Lackadaisical quantum walk for spatial search. Modern Physics Letters A,
35(08):2050043, 2020. doi:https://doi.org/10.1142/S0217732320500431.

16

MSLQW with Partial Phase Inversion A PREPRINT

Jonathan H A Carvalho, Luciano S Souza, Fernando M Paula Neto, and Tiago A E Ferreira. On applying the lack-
adaisical quantum walk algorithm to search for multiple solutions on grids. Information Sciences, 622:873–888,
2023. doi:https://doi.org/10.1016/j.ins.2022.11.142.

Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Physical Review A, 48(2):1687, 1993.
doi:https://doi.org/10.1103/PhysRevA.48.1687.

Andris Ambainis, Artūrs Bačkurs, Nikolajs Nahimovs, Raitis Ozols, and Alexander Rivosh. Search by quantum walks
on two-dimensional grid without amplitude amplification. In Conference on Quantum Computation, Communica-
tion, and Cryptography, pages 87–97. Springer, 2012. doi:https;//doi.org/10.1007/978-3-642-35656-8_7.

Jingyuan Zhang, Yonghong Xiang, and Weigang Sun. A discrete random walk on the hypercube. Physica A: Statistical
Mechanics and its Applications, 494:1–7, 2018. doi:https://doi.org/10.1016/j.physa.2017.12.005.

Amit Saha, Ritajit Majumdar, Debasri Saha, Amlan Chakrabarti, and Susmita Sur-Kolay. Faster search of clus-
tered marked states with lackadaisical quantum walks. Quantum Information Processing, 21(8):1–13, 2022.
doi:https://doi.org/10.1007/s11128-022-03606-6.

Hajime Tanaka, Mohamed Sabri, and Renato Portugal. Spatial search on johnson graphs by continuous-time quantum
walk. Quantum Information Processing, 21(2):1–13, 2022. doi:https://doi.org/10.1007/s11128-022-03417-9.

Dengke Qu, Samuel Marsh, Kunkun Wang, Lei Xiao, Jingbo Wang, and Peng Xue. Determin-
istic search on star graphs via quantum walks. Physical Review Letters, 128(5):050501, 2022.
doi:https://doi.org/10.1103/PhysRevLett.128.050501.

Salvador Elías Venegas-Andraca. Quantum walks: a comprehensive review. Quantum Information Processing, 11(5):
1015–1106, 2012. doi:https://doi.org/10.1007/s11128-012-0432-5.

Julia Kempe. Quantum random walks hit exponentially faster. arXiv preprint, 2002.
doi:https://doi.org/10.48550/arXiv.quant-ph/0205083.

Cristopher Moore and Alexander Russell. Quantum walks on the hypercube. In International Workshop on Random-
ization and Approximation Techniques in Computer Science, pages 164–178, Berlin, Heidelberg, 2002. Springer.
doi:https://doi.org/10.1007/3-540-45726-7_14.

Peter Høyer and Zhan Yu. Analysis of lackadaisical quantum walks. Quantum Information and Computation, 20
(13-14):1138–1153, 2020. doi:https://doi.org/10.26421/QIC20.13-14-4.

Zhan Yu. Searching faster using self-loops in quantum walks. University of Calgary, 2018. https://prism.
ucalgary.ca/server/api/core/bitstreams/406e4407-a7fb-4c51-a259-6ff3e0e8bd5f/content. Ac-
cessed 5 May 2023.

Henrique C T Santos, Luciano S Souza, Jonathan H A Carvalho, and Tiago A E Ferreira. Pesc–parallel experiment
for sequential code. arXiv preprint, 2023. doi:https://doi.org/10.48550/arXiv.2301.05770.

Luciano S Souza, Jonathan H A de Carvalho, Henrique C T Santos, and Tiago A E Ferreira. Search for multiple
adjacent marked vertices on the hypercube by a quantum walk with partial phase inversion. arXiv preprint, 2023.
doi:https://doi.org/10.48550/arXiv.2305.19614.

Fangjie Peng, Meng Li, and Xiaoming Sun. Lackadaisical discrete-time quantum walk on johnson graph. Physica A:
Statistical Mechanics and its Applications, 635:129495, 2024. doi:https://doi.org/10.1016/j.physa.2024.129495.

A Evaluation of the Oracle application in three possible scenarios

Let us evaluate the application of the oracle in the three possible scenarios with respect to the edges. For each scenario,
we also apply the oracle to unmarked vertices to show its general effectiveness.

Scenario 1 The first scenario shows the oracle applied in states |⟲j , x⃗⟩ which represents the self-loop to be inverted.

• ω = x⃗, ϵ ̸=⟲j , and {⟲τ=⟲j}.

17

MSLQW with Partial Phase Inversion A PREPRINT

Q
s−1∑

j=0

|⟲j , x⃗⟩ = (I(n+m)·N − 2 |ϵ, ω⟩ ⟨ϵ, ω| − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|)
s−1∑

j=0

|⟲j , x⃗⟩

=

s−1∑

j=0

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|
s−1∑

j=0

|⟲j , x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|
s−1∑

j=0

|⟲j , x⃗⟩

=
s−1∑

j=0

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ · 0− 2 |⟲τ=j , ω⟩ · 1

= −
s−1∑

j=0

|⟲j , x⃗⟩

(20)

• ω ̸= x⃗, ϵ ̸=⟲j , and {⟲τ=⟲j}.

Q

s−1∑

j=0

|⟲j , x⃗⟩ =
s−1∑

j=0

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|
s−1∑

j=0

|⟲j , x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|
s−1∑

j=0

|⟲j , x⃗⟩

=
s−1∑

j=0

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ · 0− 2 |⟲τ=j , ω⟩ · 0

=
s−1∑

j=0

|⟲j , x⃗⟩

(21)

Scenario 2 The second scenario shows the application of the oracle in the jth self-loop |⟲j , x⃗⟩, where τ ̸= j.

• ω = x⃗, ϵ ̸=⟲j , and {⟲τ ̸=⟲j}.

Q
m−1∑

j=s

|⟲j , x⃗⟩ = (I(n+m)·N − 2 |ϵ, ω⟩ ⟨ϵ, ω| − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|)
m−1∑

j=s

|⟲j , x⃗⟩

=
m−1∑

j=s

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|
m−1∑

j=s

|⟲j , x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|
m−1∑

j=s

|⟲j , x⃗⟩

=

m−1∑

j=s

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ · 0− 2 |⟲τ=j , ω⟩ · 0

=
m−1∑

j=s

|⟲j , x⃗⟩

(22)

• ω ̸= x⃗, ϵ ̸=⟲j , and {⟲τ ̸=⟲j}.

Q
m−1∑

j=s

|⟲j , x⃗⟩ =
m−1∑

j=s

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|
m−1∑

j=s

|⟲j , x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|
m−1∑

j=s

|⟲j , x⃗⟩

=

m−1∑

j=s

|⟲j , x⃗⟩ − 2 |ϵ, ω⟩ · 0− 2 |⟲τ=j , ω⟩ · 0

=
m−1∑

j=s

|⟲j , x⃗⟩

(23)

18

MSLQW with Partial Phase Inversion A PREPRINT

Scenario 3 The third scenario shows the application of the oracle on the ith non-loop edge |i, x⃗⟩, i.e., which is not a
self-loop.

• ω = x⃗, ϵ = i, and {⟲τ ̸= i}.

Q |i, x⃗⟩ = (I(n+m)·N − 2 |ϵ, ω⟩ ⟨ϵ, ω| − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|) |i, x⃗⟩
= |i, x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|i, x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|i, x⃗⟩
= |i, x⃗⟩ − 2 |ϵ, ω⟩ · 1− 2 |⟲τ=j , ω⟩ · 0
= − |i, x⃗⟩

(24)

• ω ̸= x⃗, ϵ = i, and {⟲τ ̸= i}.

Q |i, x⃗⟩ = |i, x⃗⟩ − 2 |ϵ, ω⟩ ⟨ϵ, ω|i, x⃗⟩ − 2 |⟲τ=j , ω⟩ ⟨⟲τ=j , ω|i, x⃗⟩
= |i, x⃗⟩ − 2 |ϵ, ω⟩ · 0− 2 |⟲τ=j , ω⟩ · 0
= |i, x⃗⟩

(25)

Consider Equations 20 and 21. Note that the phase of the self-loops |⟲j⟩ is inverted only when ω = x⃗, i.e., if |x⟩
contains the target state. According to Equations 22 and 23, the jth self-loop, where τ ̸= j, stay unchanged even if
|x⟩ contains the target state. The same behavior observed in Scenario 1 occurs with the ith non-loop edge in Scenario
3 according to Equations 24 and 25. The phase will only be inverted if |x⟩ contains the target state. As we can see, the
oracle is able to partially invert the phase of the target state, based on position and edge information.

19

71

Search for Multiple Adjacent Marked
Vertices on the Hypercube by Quantum

Walk with Partial Phase Inversion
A preprint can be found at: https://arxiv.org/pdf/2305.19614

https://arxiv.org/pdf/2305.19614

SEARCH FOR MULTIPLE ADJACENT MARKED VERTICES ON THE
HYPERCUBE BY A QUANTUM WALK WITH PARTIAL PHASE

INVERSION

A PREPRINT

Luciano S. de Souza∗

Departamento de Estatística e Informática
Universidade Federal Rural de Pernambuco

Recife, Brasil
luciano.serafim@ufrpe.br

Jonathan H. A. de Carvalho
Centro de Informática

Universidade Federal de Pernambuco
Recife, Brasil

jhac@cin.ufpe.br

Henrique C. T. Santos
Instituto Federal de Educação, Ciência e

Tecnologia de Pernambuco
Recife, Brasil

henrique.santos@recife.ifpe.edu.br

Tiago A. E. Ferreira
Departamento de Estatística e Informática

Universidade Federal Rural de Pernambuco
Recife, Brasil

tiago.espinola@ufrpe.br

November 18, 2024

ABSTRACT

Quantum walks provide an efficient tool for the construction of new quantum search algorithms. In
this paper, we analyze the application of the Multiself-loop Lackadaisical Quantum Walk on the
hypercube that uses partial phase inversion of the target state to search for multiple adjacent marked
vertices. We consider two scenarios and one of them evaluates the influence of the relative position of
non-adjacent marked vertices on the search results. The use of self-loops and the composition of their
weights are an essential part of the construction process of new quantum search algorithms based
on lackadaisical quantum walks, however, other aspects have been considered, such as, for example,
the type of marked vertices. It is known that part of the energy of a quantum system is retained
in states adjacent to the target state. This behavior causes the amplification of these states where
the sum of probability amplitudes reaches values equivalent to those of the target state, reducing
their chances of being observed. Here we show experimentally that with the use of partial phase
inversion of the target state, it is possible to amplify its probability amplitudes even in scenarios with
adjacent marked vertices reaching maximum success probabilities with values close to 1. We also
show that the relative position of the non-adjacent marked vertices did not significantly influence the
results. The lackadaisical quantum walk generalization in using multiple self-loops to only a single
self-loop and the ideal composition of a weight value was sufficient to obtain advances to quantum
search algorithms based on quantum walks. However, the results presented here show that many
other aspects need to be taken into account for the construction of new quantum algorithms. It was
possible to add gains in the maximum probabilities of success compared to other results found in the
literature. In one of the most significant cases, the probability of success increased from p ≈ 0.38 to
p > 0.99. Therefore, the use of partial phase inversion of target states brings new contributions to
the development of new quantum search algorithms based on quantum walks and the use of multiple
self-loops.

∗R. Dom Manuel de Medeiros, s/n, Dois Irmãos – Recife, Pernambuco – Brasil

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

Keywords Quantum Computing · Quantum Walks · Quantum Search Algorithm · Lackadaisical Quantum Walk ·
Multiple Self-loops · Adjacent Marked Vertices · Partial Phase Inversion

1 Introduction

Many advances have been achieved since the publication of the article by Aharonov et al. [1993], which is considered
the first in quantum walks. One of the first quantum search algorithms based on quantum random walks was designed
by Shenvi et al. [2003], which defined the quantum walks as one of the most promising resources and an intuitive
framework for building new quantum algorithms. Many other works on quantum walks have been developed since this
moment [Ambainis et al., 2004, Potoček et al., 2009, Hein and Tanner, 2009, Ambainis et al., 2012].

Amongst many proposed works in quantum walks, Wong [2015] developed a quantum search algorithm called
lackadaisical quantum walks - LQW, an analog of classical lazy random walks in which the quantum walker has a
chance to stay at the current vertex position by introducing m self-loops of integer weight l at each vertex of the
complete graph. This proposal was altered by Wong [2017] where the m self-loops were generalized to one self-loop of
non-integer weight. In turn, Souza et al. [2023] proposed a new quantum search algorithm based on the LQW called
Multiself-Loop Lackadaisical Quantum Walk - MSLQW, which uses m self-lops in each vertex on the hypercube with
weight value l = l′ ·m, and the partial phase inversion of the target state to research multiple marked vertices. The
weight value l′ ∈ R and m ∈ Z.

However, some other studies indicate that the type of marked vertices influences the results of quantum search algorithms,
in particular, the adjacent marked vertices. According to Potoček et al. [2009], the final state of the algorithm designed
by Shenvi et al. [2003] is mainly composed of the marked state but also has small contributions from its nearest
neighbors, i.e., part of the probability amplitude is retained in adjacent vertices. Another behavior of quantum walks on
the hypercube referring to adjacent marked vertices is the formation of stationary states [Nahimovs et al., 2019]. Souza
et al. [2021] experimentally showed that adjacent marked vertices interfere with the results of the search for multiple
marked vertices. Although they have proposed a new ideal value of weight l = (d/N) · k, when there are adjacent
marked vertices in the set of solutions occurs a decrease in the maximum probability of success.

Therefore, this work objective is to apply MSLQW-PPI to research multiple marked vertices in two scenarios. The
first scenario analyzes research by multiple adjacent and no-adjacent vertices to verify that the relative position of
non-adjacent vertices interferes with the search results. The second scenario analyzes research by multiple adjacent
vertices. Based on the methodology used by Souza et al. [2023], the results presented in this work are promising.
Comparing the results of this work with the results obtained by Souza et al. [2021] there was a gain in the maximum
probability of success to values close to 1. Before some of the success probabilities reached only p ≈ 0.59 and p ≈ 0.38,
the first and second scenarios respectively.

In their proposal, Souza et al. [2023] used the search for non-adjacent marked vertices with the phases of 1 ⩽ s < m
inverted self-loops and 1 ⩽ m ⩽ 30. The results indicated that, by inverting the phase of only one self-loop, it is
possible to achieve maximum probabilities of success close to 1. Based on the results of Souza et al. [2023] we
applied the particular case of MSLQW-PPI with s = 1 inverted self-loop. Compared to the results obtained in this
work, the maximum success probabilities remain close to 1. The coefficient of variation was also used to evaluate the
dispersion around the average relative position of the non-adjacent marked vertices. The coefficient of variation was
also used to evaluate the dispersion around the average maximum probability according to the relative position of the
non-adjacent marked vertices. The results indicate that the variation around the maximum mean probability of success
is not significant. These results are important because they show that the partial inversion of the target state based
on the use of multiple self-loops provides a new perspective of advances in the development of new quantum search
algorithms.

This paper is organized as follows. In Section 2 we present some concepts about Multiself-loop Lackadaisical Quantum
Walks in the hypercube. Section 3 the experiments are defined. Section 4 presents the results and discussion. Finally, in
Section 5 are the conclusions.

2 Multi-self-loop lackadaisical quantum walk on the hypercube

The lackadaisical quantum walk is the quantum counterpart of the classical lazy random walk. This quantum algorithm
was proposed by Wong [2015] and is obtained by adding a self-loop to each vertex of the graph. Then, the Hilbert space
associated with the lackadaisical quantum walk in the hypercube is

H = Hn+1 ⊗H2n

2

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

whereHn+1 is the Hilbert space associated with the quantum coin space, andH2n is the Hilbert space associated with
nodes in the hypercube. According to Høyer and Yu [2020], in a n-regular graph by adding a self-loop of weight l to
each vertex, the coined Hilbert space becomes

Hn+1 = {|e0⟩ , |e1⟩ , . . . , |en−1⟩ , |⟲⟩}.
where ei is a binary string of n bits with 1 in the i-th position [Kempe, 2002, Shenvi et al., 2003], and |⟲⟩ is the
self-loop. Weighted self-loop accounting is done by modifying Grover’s coin as follows

C = 2 |sC⟩ ⟨sC | − I(n+1) (1)
where

|sC⟩ = 1√
n+ l

(
√
l |⟲⟩+

n−1∑

i=0

|i⟩
)
. (2)

The Lackadaisical Quantum Walk system in the hypercube starts as follows

|Ψ(0)⟩ = 1√
N

∑

x⃗

|x⃗⟩ ⊗ |sC⟩ . (3)

Substituting Equation 2 into Equation 3 we obtain the initial state described in Equation 4.

|Ψ(0)⟩ =
√
l√

N ×
√
n+ l

∑

x⃗

|x⃗,⟲⟩+ 1√
N ×

√
n+ l

∑

x⃗

n−1∑

i=0

|x⃗, i⟩ (4)

The Multiself-loop lackadaisical quantum walk was proposed by Souza et al. [2023]. This quantum algorithm is
obtained by adding m self-loops at each vertex of the hypercube and a partial phase inversion of the target state is
applied. The Hilbert space associated with the lackadaisical quantum walk in the hypercube is

H = Hn+m ⊗H2n .

Then, the Hilbert space associated with the coin space becomes

Hn+m = {|e0⟩ , |e1⟩ , . . . , |en−1⟩ , |⟲0⟩ , |⟲1⟩ , . . . , |⟲m−1⟩}.
To account for the weighted auto-loop, a modification is made to the Grover coin described in Equation 1 as follows

C = 2 |sC⟩ ⟨sC | − I(n+m) (5)
where

|sC⟩ = 1√
n+ l

√l′

m−1∑

j=0

|⟲i⟩+
n−1∑

i=0

|i⟩

 (6)

and l = l′ ·m. The Multiself-loop lackadaisical quantum walk system on the hypercube is also started according to
Equation 3. Substituting Equation 6 into Equation 3, we obtain the initial state described in Equation 7.

|Ψ(t = 0)⟩ =
√
l′√

n+ l ×
√
N

m−1∑

j=0

∑

x⃗

|⟲j , x⃗⟩+
1√

n+ l ×
√
N

n−1∑

i=0

∑

x⃗

|i, x⃗⟩ (7)

The proposed modification of the oracle described in Equation 8 makes it possible to identify the components of the
target state.

Q = I(n+m)·N − 2
∑

ω

n∑

ϵ=1

|ϵ, ω⟩ ⟨ϵ, ω| − 2
∑

ω

∑

τ

|⟲τ , ω⟩ ⟨⟲τ , ω| (8)

3

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

where |ω⟩ represents the marked vertex, ϵ represents an edge that is not a self-loop, and ⟲τ is the self-loop that will
have its phase inverted. Consider an arbitrary state which denotes the superposition of all edges

|x⟩ = |x⃗,⟲0⟩+ |x⃗,⟲1⟩+ |x⃗,⟲2⟩+ · · ·+ |x⃗,⟲m−1⟩+ |x⃗, 0⟩+ |x⃗, 1⟩+ |x⃗, 2⟩+ · · ·+ |x⃗, n− 1⟩ . (9)

Consider the states |⟲τ ⟩ as the target self-loops and s = 1. Applying the phase inversion operator, represented by
Equation 10.

Q = I(n+m)·N − 2
∑

ω

n−1∑

ϵ=0

|ϵ, ω⟩ ⟨ϵ, ω| − 2
∑

ω

∑

τ

|⟲τ=0, ω⟩ ⟨⟲τ=0, ω| (10)

where In+m is the identity operator of dimension n+m and |⟲τ=0⟩ as the target self-loop, we have

|⃗x⟩ = − |x⃗,⟲0⟩+ |x⃗,⟲1⟩+ |x⃗,⟲2⟩+ · · ·+ |x⃗,⟲m−1⟩ − |x⃗, 0⟩ − |x⃗, 1⟩ − |x⃗, 2⟩ − · · · − |x⃗, n− 1⟩ . (11)

3 Experiment setup

According to Shenvi et al. [2003], Potoček et al. [2009], part of the probability amplitude of a quantum walk on the
hypercube is retained at vertices adjacent to a marked vertex, and if two marked vertices on the hypercube are adjacent
stationary states are formed [Nahimovs, 2019]. Souza et al. [2021] showed that adjacent marked vertices interfere with
the search performance. Therefore, the experiments performed in this work are divided into the following two scenarios.
In the first scenario, we consider both adjacent and non-adjacent marked vertices. In the second scenario, we consider
only the adjacent marked vertices.

3.1 Definition of marked vertex samples

According to the definitions of the hypercube, two vertices are adjacent if the Hamming distance between them is 1.
Non-adjacent vertices are those that have a Hamming distance of at least 2 from any other vertex. In this way, we define
the set of marked vertices to execute the simulations. The set of marked vertices is divided into Mk,γ groups of samples
with k vertices and j samples.

The first set is formed by the vertices that are both adjacent and non-adjacent. This set is divided into twelve groups of
one hundred samples. For each sample of k adjacent vertices, other k − 1 non-adjacent vertices are also marked, and
thirty MSLQW-PPI are performed. Therefore, thirty-six hundred simulations are performed. Every hundred simulations
we preserve the same k adjacent marked vertices and vary the locations of the k − 1 non-adjacent marked vertices, for
example, if k = 3 we have two adjacent marked vertices and one non-adjacent marked vertex,

M3,100 = [{0, 1, 1128}1, {0, 1, 2950}2, . . . , {0, 1, 1470}100]
Every one hundred new simulations, k new adjacent vertices and (k − 1) · 100 new non-adjacent vertices are marked
and added to the group until k + (k − 1) = 5, 7, . . . , 25.

The second set is formed by the adjacent vertices. This set is divided into twelve groups of one sample that contain
between 2 and 13 marked vertices. To search for adjacent vertices, twelve simulations are performed. Initially, we have
two marked vertices and at each new simulation a new vertex is marked and added to the new group as follows

M2,1 = {0, 1},M3,1 = {0, 1, 2}, . . . ,M13,1 = {0, 1, 2, . . . , 1024, 2048}
until all adjacent vertices are marked.

The samples have k distinct vertices, i.e., without replacement. The simulations performed in the set of the first scenario
were necessary so that we could obtain the average behavior based on the relative position of the non-adjacent marked
vertices and verify their influence on the results. In each simulation, thirty MSLQW-PPI are performed. The stop
condition for a simulation occurs after each of the thirty walks obtains the maximum value of the probability amplitude.
In each quantum walk, a number m of self-loops per vertex was defined, which varies between 1 and 30. The weight l
is distributed by dividing its value between m equal parts.

4

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

3.2 Hardware and software setup for the simulations

The simulations were performed using the Parallel Experiment for Sequential Code - PESC [Henrique et al., 2023], to
perform computational simulations distributed over a network. The platform provides a web interface for configuring
simulation requests and manages the status and lifecycle of the request. The use of the platform simplified the
simulations execution process, which was important to support the collect the study data. The tool is being developed for
the instrumentation and optimization of the research group’s computational experiments. The programming language
used to write the algorithms was Python 3.7. All machines that were used in the simulations utilize the operational
system, Ubuntu 18.04.6 LTS (Bionic Beaver), and have an HD of 500 GiB. Table 1 shows the machines’ settings.

Table 1: Machine hardware configuration.

Adapted from: [Souza et al., 2023].

Machines System RAM System Processor

1 8 GiB Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
1 16 GiB Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
2 32 GiB Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz
2 32 GiB Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz

4 Results and discussion

As previously defined, the experiments are divided into two scenarios according to the type of marked vertices. In
the first scenario, we have adjacent and non-adjacent marked vertices. As we analyzed the relative positional of the
non-adjacent marked vertices, thirty-six thousand simulations were performed, which are divided into twelve groups
with one hundred samples from k vertices, and to each sample was performed thirty quantum walks MSLQW. Then, the
variability of the results was also analyzed and is represented in Fig. 2. In the second scenario, we only have adjacent
marked vertices. Each node has the same number of adjacent vertices as the hypercube’s degree number, therefore,
twelve simulations were realized, and in each simulation, thirty MSLQW-PPI were also performed. The quantum walks
vary according to the number of self-loops from one to thirty. The results are represented in Figures 1 and 3 respectively.
They present the maximum probability of success according to the number of self-loops and marked vertices.

4.1 Analyzing the search with adjacent and non-adjacent marked vertices

Fig. 1a shows the probability of success for the weight l = n/N . Rhodes and Wong [2020] proposed this weight value
to search a single vertex while Souza et al. [2021] used it to search multiple vertices, however, the results showed that
this weight value is not ideal in this case. Souza et al. [2023] used this weight value and applied MSLQW-PPI to search
for multiple non-adjacent marked vertices but there was no increase in the maximum probability of success. In this
article, the maximum average probability obtained p = 0.999 with three marked vertices (two adjacent vertices and one
non-adjacent vertex) and a single self-loop, which is a result close to that achieved by Souza et al. [2021] of p = 0.997.
In both cases, as the number of marked vertices increases, the maximum probability of success decreases.

Fig. 1b shows the success probability using the weight l = (n/N) · k. In cases where there are only non-adjacent
marked vertices, for this weight value, only a single self-loop is needed [Souza et al., 2021, 2023]. Although, when
there are adjacent marked vertices, it is necessary to increase the number of self-loops to obtain success probabilities
close to 1 as we can see in Table 2. In some cases, we can observe that there was an improvement in the probability of
success compared to the results obtained with the use of only one self-loop.

Comparing columns A and C of Table 2, we can see that from a certain quantity of self-loops, it is possible to obtain
more significant probabilities than those achieved with the use of a single self-loop. It is necessary to use the least
number of self-loops to obtain these results. Now, comparing columns B and C with at least two self-loops, it is possible
to improve the maximum probability of success. However, for this self-loop weight value, as the number of marked
vertices increased, only a single self-loop is needed to achieve probabilities of approximately p ≈ 0.98.

Fig. 1c shows the probability of success in the search for adjacent and non-adjacent vertices using the weight value
l = n2/N . This weight is proposed by Souza et al. [2023] and is composed of the weight value proposed by Rhodes
and Wong [2020] to search for one marked vertex plus an exponent in the element that represents the degree of the
vertex in the numerator. Compared with the results found by Souza et al. [2021] and with the results shown in Fig. 1a,

5

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

(a) l = n/N (b) l = (n/N) · k

(c) l = n2/N (d) l = (n2/N) · k

Figure 1: The probability of success of the MSLQW-PPI to search for adjacent and non-adjacent marked vertices with
n = 12 and N = 4096 vertices. (a) weight value l = n/N . (b) weight value l = (n/N) · k. (c) weight value l = n2/N .
(d) weight value l = (n2/N) · k.

there was a significant improvement in the maximum probability of success for numbers k > 3 marked vertices. In this
scenario, the success probabilities depend on the inversely proportional relationship between the number k of marked
vertices and the number m of Self-loops. This means that as the number of marked vertices increases, the number of
self-loops decreases and the other way around, however, the maximum probability of success continues above p = 0.97.

Another analysis of the results for the weight l = n2/N was performed. Two different scenarios are compared and
some results are shown in Table 3. The results presented in column A refer to the scenario with only non-adjacent
marked vertices obtained by Souza et al. [2023]. In the scenario presented in column B where we have both types of
marked vertices for each k adjacent vertices, we have k − 1 non-adjacent vertices. Although there are adjacent marked
vertices in the sample, the use of multiple self-loops guarantees, in some cases, maximum success probabilities close to
1.

Note that, in the case where there are only non-adjacent marked vertices, as the number of marked vertices increases the
number of self-loops decreases. However, when there are marked adjacent vertices, a larger number of self-loops is
needed to maintain the success probability close to the maximum. Comparisons made between different scenarios and
the same weights show that the type of marked vertex influences the search result. However, although there are adjacent
marked vertices in the sample, partial state inversion guarantees, in some cases, maximum success probabilities close to
1.

Now, we are going to analyze the case where the scene is the same but the weights are different. Considering the
behavior of the probability of success in Figures 1c and 1d, we can see that not only the type of marked vertices
influences the probability of success, but also the weight value. Note that the difference in weight composition, in
this case, is the number of marked vertices. We can see that after the increase in the number of self-loops, overall we

6

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

Table 2: Cases for searching adjacent and non-adjacent marked vertices where more than one self-loop is required to
obtain a maximum probability close to 1 using the weight l = (n/N) · k proposed by Souza et al. [2021]. Rows with
(-) in column A mean that the same values are reached in the same rows in column B.

A B C

k p m p m p m

3 0.794 8 0.999 3 0.754 1
5 0.911 4 0.996 2 0.863 1
7 0.931 3 0.993 2 0.921 1
9 - - 0.981 2 0.948 1

11 - - 0.970 2 0.964 1

Table 3: Comparison between the probability of success and number of self-loops for two different scenarios for weight
value l = n2/N . Column A represents the results found by Souza et al. [2023] to search for non-adjacent marked
vertices and column B to search for adjacent and non-adjacent marked vertices.

A B

k p m p m

3 0.999 4 0.999 12
5 0.990 2 0.997 5
7 0.992 2 0.996 3
9 0.978 1 0.996 2
11 0.996 1 0.983 2

had a significant improvement in the probability of success. We can better see these results in Table 4 with shows the
maximum probabilities of success and the number of self-loops according to the number of marked vertices and weight
value. Comparing the results described in Table 4a and Table 4b, it is important to realize that the weight composition is
very relevant. Although the type of marked vertices can influence the probability of success, with an ideal weight value
along with an ideal number of self-loops, it is possible to improve the results. The exception was k = 3, where there
was a reduction in the probability of success but still close to 1. The other bold lines show the cases with the more
expressive improvements in the probability of success. In general, there was a significant increase in the number of
self-loops.

Table 4: Ideal number of self-loops and maximum probability of success for searching adjacent and non-adjacent
marked vertices. (4a) weight value l = n2/N . (4b) weight value l = (n2/N) · k.

(a)

k p m k p m

3 0.999 12 15 0.996 1
5 0.997 5 17 0.991 1
7 0.996 3 19 0.980 1
9 0.996 2 21 0.960 1

11 0.983 2 23 0.941 1
13 0.983 1 25 0.920 1

(b)

k p m k p m

3 0.988 30 15 0.997 16
5 0.997 25 17 0.996 16
7 0.997 22 19 0.997 15
9 0.996 19 21 0.997 15

11 0.996 18 23 0.996 16
13 0.996 16 25 0.995 15

As in Souza et al. [2023], we analyzed whether the relative position of the non-adjacent marked vertices influences
the results of the maximum probability of success. We also used the coefficient of variation to analyze the level
of dispersion of the results. The relative position of the non-adjacent marked vertices also did not show significant
influence considering a numerical precision of four digits. Fig. 2 shows the coefficient of variation for the results
presented in Fig. 1. Variations around the mean value are small, however, the behavior shown is stable. The maximum

7

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

success probabilities close to 1 coincide with these small variations. Considering the weight value of the self-loop, in
general, the weight l = (n2/N) · k indicated minor variability.

(a) l = n/N (b) l = (n/N) · k

(c) l = n2/N (d) l = (n2/N) · k

Figure 2: The coefficient of variation of the MSLQW-PPI to search for adjacent and non-adjacent marked vertices. The
results are represented in percentage terms. (a), (b), (c), and (d) represents the coefficient of variation of the results
presented in Figures 1a, 1b, 1c, and 1d for the weight values l = n/N , l = (n/N) · k, l = n2/N , and l = (n2/N) · k,
respectively.

4.2 Analyzing the search with adjacent marked vertices

The simulations performed in the samples of the previous scenario were necessary so that we could obtain the average
behavior based on the relative position of the non-adjacent marked vertices. In this scenario, let us analyze only adjacent
vertices. According to Nahimovs et al. [2019], when there are two adjacent marked vertices, a stationary state occurs. In
this case, the maximum probability of success obtained in our simulations was approximately p = 0.02 for all weights.
Now, consider k ⩾ 3. Fig. 3a shows the probability of success for the weight l = n/N . Comparing the results presented
by Souza et al. [2021] and Souza et al. [2023] to search for multiple marked vertices and a single self-loop we had an
improvement in the success probability for k = 3 marked vertices which were p = 0.745 and evolved to p = 0.999
with m = 3 self-loops.

Fig. 3b shows the probability of success for the weight l = (n/N) · k. Compared to the results obtained by Souza
et al. [2021] for searching multiple adjacent marked vertices using a single self-loop, there was an improvement in
the probability of success. As we can see in Table 5, two results are significant, the search for k = 3 marked vertices,
with 9 self-loops allowed to increase the probability from p = 0.386 to p = 0.999. For k = 4 marked vertices, with
4 self-loops allowed to increase the probability from p = 0.639 to p = 0.996. Fig. 1b shows the results where both
adjacent and non-adjacent vertices are marked. Analyzing the cases where the number of marked vertices is the same,

8

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

i.e., k = {3, 5, 7, 9, 11} with m = 2 self-loops, although the scenarios are different, the maximum probability of
success remained above p = 0.99.

(a) l = n/N (b) l = (n/N) · k

(c) l = n2/N (d) l = (n2/N) · k

Figure 3: The probability of success of the MSLQW-PPI to search for adjacent marked vertices with n = 12 and
N = 4096 vertices. (a) weight value l = n/N . (b) weight value l = (n/N) · k. (c) weight value l = n2/N . (d) weight
value l = (n2/N) · k.

Again, let us analyze two different scenarios for the same weight values. Fig. 3c shows the success probabilities
for searching only adjacent marked vertices while Fig. 1c shows the success probabilities for searching adjacent and
non-adjacent marked vertices both using the weight l = n2/N . Note that the behaviors are very similar, however, in the
scenario where there are only adjacent marked vertices, which is the case in Fig. 3c, a greater number of self-loops is
necessary when the density of adjacent marked vertices is small. Table 6 shows the comparison between the success
probabilities and the number of self-loops for the cases where the number of marked vertices is the same. Again, note
that the results are similar except for k = 3, where there was a significant increase in the number of self-loops.

Now, consider Fig. 3d. It shows the success probabilities to search for adjacent marked vertices using the self-loop
weight l = (n2/N) · k. Compared with the results of the scenario presented in Fig. 1d we notice a very similar behavior
where for a small density of marked vertices a greater number of self-loops is necessary, however, when this density of
marked vertices increases, the number of self-loops decreases to the point of approaching the results presented by Souza
et al. [2023] for the same weight value l = (n2/N) · k. Table 7 shows the number of self-loops needed to obtain the
maximum probabilities of success. Comparing with the results presented in Table 4b for the same numbers of marked
vertices, it is possible to see that, a greater number of self-loops are required to achieve success probabilities close to 1
when there are only adjacent marked vertices. However, for k = 3, m = 30 was insufficient.

To obtain the complexity of the algorithm proposed by Souza et al. [2023]. applied to the search for adjacent vertices,
two analyses were performed. The first analysis described in Fig. 4 shows the runtime complexity when N = 2n

is changed. The second analysis described in Fig. 5 shows how the runtime complexity behaves when m self-loops

9

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

Table 5: Comparison between the success probabilities and the number of self-loops to search for adjacent marked
vertices with the weight l = (n/N) · k. (5a) shows the results obtained by Souza et al. [2021] using a single self-loop.
(5b) shows the results in this work using multiple self-loops.

(a)

k p

3 0.386
4 0.639
5 0.783
6 0.853
7 0.889
8 0.916
9 0.937

10 0.942
11 0.945

(b)

k p m

3 0.999 9
4 0.996 4
5 0.997 3
6 0.994 2
7 0.997 2
8 0.994 2
9 0.990 2

10 0.982 2
11 0.975 2

are added at each vertex of the hypercube. As in Souza et al. [2023], the computational cost when we consider the
hypercube size is O(

√
((n+m)). The computational cost where m self-loops varies is O(log (m)).

(a) Adjacents. (b) Adjacents and non adjacents.

Figure 4: The time complexity of the algorithm relative to the size of the hypercube. The solid red line represents the
estimated curve and the blue dots are the numerical simulation values of the quantum walk.

5 Conclusions

In this work, we analyzed the application of MSLQW-PPI in two scenarios based on the type of marked vertices:
adjacent and non-adjacent. In the first scenario, the two types of marked vertices were searched. Here, we analyzed the
relative position of the non-adjacent marked vertices to verify your influence on the results about adjacent vertices,
for this, the coefficient of variation was also used to verify the dispersion of results around the maximum success
probability mean value as Souza et al. [2023]. In the second scenario, we analyzed only the adjacent marked vertices.
The dependence on the self-loop weight value is inherent to the lackadaisical quantum walk. Therefore, the composition
of the weights is important. Thus, all analyses were made considering the four weight values. However, when applied
to MSLQW-PPI a strategy of weight distribution is equally necessary because due to the use of the multiple self-loop.
The strategy of weight distribution in this work was the same used by Souza et al. [2023], i.e., the weight l = l′/m.

In the first scenario, to search for adjacent and non-adjacent vertices, according to the results, the relative position of
non-adjacent marked vertices does not have a significant influence, considering a numerical precision of four digits.
The results obtained by Souza et al. [2021, 2023] to search for non-adjacent marked vertices indicate that the weight
values influenced the maximum success probabilities according to weight values l = (n/N) · k and l = (n2/N) · k.

10

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

(a) Adjacents (b) Adjacents and non adjacents

(c) Adjacents (d) Adjacents and non adjacents

Figure 5: The algorithm’s time complexity concerning the number of self-loops at each vertex. The solid lines represent
the estimated curves. The points are the values from numerically simulating the quantum walk. For each figure, n is a
constant.

Table 6: Comparison between the probability of success and number of self-loops for two different scenarios. The
column for 1c represents the results of searching for adjacent and non-adjacent vertices and the column for 3c to search
for adjacent vertices.

Figures

1c 3c

k p m p m

3 0.999 12 0.991 30
5 0.997 5 0.998 7
7 0.996 3 0.995 3
9 0.996 2 0.995 2
11 0.983 2 0.986 2

11

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

Table 7: Maximum success probability and number of self-loops to search for adjacent marked vertices with the weight
l = (n2/N) · k.

k p m

3 0.681 30
4 0.943 30
5 0.995 30
6 0.999 28
7 0.998 24
8 0.998 21
9 0.998 20

10 0.996 19
11 0.997 18
12 0.997 18
13 0.997 17

Moreover, when we analyze the coefficient of variation, we saw that a minor variability coincides with the maximum
probability of success. Fig. 2 shows that the number of marked vertices influences the results causing a more significant
variability. In the second scenario, the results obtained in the search for adjacent marked vertices present very similar
results to the search for adjacent and non-adjacent marked vertices, except in some cases. For example, when the weight
l = (n2/N) · k, the number of self-loops increases considerably.

In summary, we conclude that for MSLQW-PPI, there is a dependence between the weight value, the vertex type, the
number of marked vertices, and the number of self-loops needed to obtain success probabilities close to 1. In the search
for adjacent and non-adjacent marked vertices, the weight that presented the best results was l = (n2/N) · k. In the
search for adjacent marked vertices, three of four weights presented the best results: l = (n/N) · k, l = (n2/N), and
l = (n2/N) · k. The results presented in Fig. 3d show that from a certain k, the self-loops converge to a certain quantity.
In future works, we intend to apply this methodology to evaluate the MSLQW-PPI in other d-regular structures with
samples that contain adjacent marked vertices. We intend to verify the convergence of the number of multiple self-loops
for a specific m from a certain k for the weight value l = (n2/N) · k to search for adjacents marked vertices.

Acknowledgments

Acknowledgments to the Science and Technology Support Foundation of Pernambuco (FACEPE) Brazil, Brazilian
National Council for Scientific and Technological Development (CNPq), and Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 by their financial support to the development of this
research.

References
Yakir Aharonov, Luiz Davidovich, and Nicim Zagury. Quantum random walks. Physical Review A, 48(2):1687, 1993.

doi: \href{10.1103/PhysRevA.48.1687}.

Neil Shenvi, Julia Kempe, and K Birgitta Whaley. Quantum random-walk search algorithm. Physical Review A, 67(5):
052307, 2003. doi: 10.1103/PhysRevA.67.052307.

Andris Ambainis, Julia Kempe, and Alexander Rivosh. Coins make quantum walks faster. arXiv:quant-ph/0402107,
2004. URL https://arxiv.org/abs/quant-ph/0402107.

V Potoček, Aurél Gábris, Tamás Kiss, and Igor Jex. Optimized quantum random-walk search algorithms on the
hypercube. Physical Review A, 79(1):012325, 2009. doi: 10.1103/PhysRevA.79.012325.

Birgit Hein and Gregor Tanner. Quantum search algorithms on the hypercube. Journal of Physics A: Mathematical and
Theoretical, 42(8):085303, 2009. doi: 10.1088/1751-8113/42/8/085303.

Andris Ambainis, Artūrs Bačkurs, Nikolajs Nahimovs, Raitis Ozols, and Alexander Rivosh. Search by quantum walks
on two-dimensional grid without amplitude amplification. In Conference on Quantum Computation, Communication,
and Cryptography, pages 87–97. Springer, 2012. doi: https;//doi.org/10.1007/978-3-642-35656-8_7.

12

Search for Multiple Adjacent Marked Vertices on the Hypercube by a QW with PPI A PREPRINT

Thomas G Wong. Grover search with lackadaisical quantum walks. Journal of Physics A: Mathematical and Theoretical,
48(43):435304, 2015. doi: 10.1088/1751-8113/48/43/435304.

Thomas G Wong. Coined quantum walks on weighted graphs. Journal of Physics A: Mathematical and Theoretical, 50
(47):475301, 2017. doi: 10.1088/1751-8121/aa8c17.

Luciano S. Souza, Jonathan H. A. Carvalho, Henrique C. T. Santos, and Tiago A. E. Ferreira. Multiself-loop
lackadaisical quantum walk with partial phase inversion. arXiv:2305.01121, 2023. URL https://arxiv.org/
abs/2305.01121.

Nikolajs Nahimovs, Raqueline A M Santos, and K R Khadiev. Adjacent vertices can be hard to find by quantum walks.
Moscow University Computational Mathematics and Cybernetics, 43(1):32–39, 2019.

Luciano S Souza, Jonathan H A Carvalho, and Tiago A E Ferreira. Lackadaisical quantum walk in the hyper-
cube to search for multiple marked vertices. In André Britto and Karina Valdivia Delgado, editors, Brazil-
ian Conference on Intelligent Systems, pages 249–263, Cham, 2021. Springer International Publishing. doi:
10.1007/978-3-030-91702-9_17.

Peter Høyer and Zhan Yu. Analysis of lackadaisical quantum walks. Quantum Information and Computation, 20
(13-14):1138–1153, 2020. doi: 10.26421/QIC20.13-14-4.

Julia Kempe. Quantum random walks hit exponentially faster. arXiv preprint, 2002. doi: 10.48550/arXiv.quant-ph/
0205083.

Nikolajs Nahimovs. Lackadaisical quantum walks with multiple marked vertices. In International Conference on
Current Trends in Theory and Practice of Informatics, pages 368–378. Springer, 2019.

C. T. Henrique, Luciano S. Souza, Jonathan H. A. Carvalho, and Tiago A. E. Ferreira. Pesc–parallel experiment for
sequential code. cs.DC, 2023. doi: 10.48550/arXiv.2301.05770. URL https://arxiv.org/abs/2301.05770.

Mason L Rhodes and Thomas G Wong. Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum
Information Processing, 19(9):1–16, 2020. doi: 10.1007/s11128-020-02841-z.

13

85

General Conclusions

86

This thesis investigated the application of quantum walks in different contexts,

addressing theoretical and practical challenges through four independent but interrelated

studies. Each study represents a contribution that expands the possibilities for applying

quantum walks.

In the paper “Classical Artificial Neural Network Training Using Quantum Walks

as a Search Procedure”, the application of quantum walks in the training of classical neural

networks is presented. The integration of quantum computing and classical algorithms can

offer significant computational advantages. This work contributed to the field of hybrid

computing, demonstrating the potential of quantum walks as a tool to enhance machine

learning techniques.

In the paper “Lackadaisical Quantum Walk in the Hypercube to Search for Multiple

Marked Vertices”, the lackadaisical quantum walk on the Hypercube was analyzed for

searching multiple solutions. An ideal self-loop weight value for multiple solution searches

on the hypercube was proposed. It was found that the presence of adjacent vertices among

the solutions affects the algorithm’s efficiency. This highlights a limitation of quantum

walks and provides an understanding of scenarios where such algorithms can be applied

effectively.

To mitigate the limitations observed in the previous work, an original approach

was proposed in the paper “Multi-Self-Loop Lackadaisical Quantum Walk with Partial

Phase Inversion” (MSLQW-PPI). This method is based on the lackadaisical quantum

walk for partial phase inversion of multiple self-loops, and addresses the search for both

adjacent and non-adjacent vertices. This proposal represents a methodological advance

and expands the possibilities for manipulating systems based on quantum walks. The

lackadaisical quantum walk shows a strong dependency on self-loop weights. Thus, two

new weights were proposed for use with this novel approach.

In the paper “Search for Multiple Adjacent Marked Vertices on the Hypercube by

Quantum Walk with Partial Phase Inversion”, the proposed method was applied to the

problem of search for adjacent solution vertices. The results showed that the proposed

approach can overcome the limitations identified earlier, highlighting its potential to solve

more complex and specific problems.

The studies are interconnected by their objectives to explore and push the limits of

quantum walk applications in different contexts. The first work demonstrates how quantum

87

computing can complement classical algorithms, while the subsequent papers deepen the

theoretical comprehension of quantum walks and propose advances to overcome practical

limitations. These studies not only reinforce the flexibility of quantum walks but also

provide a foundation for future hybrid and theoretical applications. The progression of

the works reflects continuous development, culminating in a robust solution for search

problems, even in contexts where solutions are adjacent.

Based on the results found in this thesis, several perspectives for future work can

be outlined. Wong’s quantum walk on the complete graph depends on a transformation

that reduces an N -dimensional graph to a 4-dimensional space. Thus, it is possible to

develop a quantum base-change operator that transforms an N -dimensional graph into an

n-dimensional state. Additionally, it is necessary to describe a quantum oracle capable

of determining whether a set of weights trains a classical artificial neural network. Since

part of a quantum system’s energy on a hypercube is retained in vertices adjacent to a

solution, a potential future direction could be the analysis and proposal of a procedure for

initializing synaptic weights in a set of vertices adjacent to a vertex that is a solution.

In this thesis, the MSLQW-PPI methodology was applied to the hypercube. Future

work could apply MSLQW-PPI to other d-regular structures and evaluate its behavior. It

was observed that the composition of self-loop weights takes into account the components

characterizing the structures that define the space where the walk occurs. In this context,

a possible future endeavor would be proposing a class of self-loop weights based on the

value of the exponent α, as well as evaluating the inclusion of other parameters in defining

self-loop weights, such as the number s of inverted self-loops or the total number m of

self-loops required to achieve maximal success probabilities close to 1.

In the annexes, the article titled “On the Application of the Lackadaisical Quantum

Walk Algorithm for Searching Multiple Solutions in Grids”, published in Information

Sciences and co-authored by the author, provides an analysis of several issues related to the

lackadaisical quantum walk algorithm applied to n-dimensional grids. Premature stopping

conditions, spatial density, and relative distance of solutions, as well as the appropriate

weight adjustment for the self-loop, can compromise the search for multiple solutions. This

article is closely related to the results found in this thesis and provides several insights on

weight adjustments and the influence of solution adjacency on search results.

We believe this work has contributed to the continuous advancement of quantum

88

walks. Furthermore, these advances allowed for the observation of other relationships

affecting the behavior and results of quantum walks, such as the impacts caused by the

adjacency of solutions in search spaces, the reuse of multiple self-loops associated with

weight distribution strategies among self-loops, and, especially, the partial application of

phase inversion. Finally, this thesis offers promising perspectives for new approaches to

quantum search algorithms based on quantum walks.

89

References

AHARONOV, Y.; DAVIDOVICH, L.; ZAGURY, N. Quantum random walks. Physical

Review A, APS, v. 48, n. 2, p. 1687, 1993.

CARVALHO, J. H. A. et al. On applying the lackadaisical quantum walk algorithm to

search for multiple solutions on grids. arXiv preprint quant-ph/2106.06274, 2021.

CARVALHO, J. H. A. et al. On applying the lackadaisical quantum walk algorithm to

search for multiple solutions on grids. Information Sciences, Elsevier, v. 622, p. 873–888,

2023.

NAHIMOVS, N.; SANTOS, R. A. Lackadaisical quantum walks on 2d grids with multiple

marked vertices. arXiv preprint arXiv:2104.09955, 2021.

QU, D. et al. Deterministic search on star graphs via quantum walks. Physical Review

Letters, APS, v. 128, n. 5, p. 050501, 2022.

RHODES, M. L.; WONG, T. G. Quantum walk search on the complete bipartite graph.

Physical Review A, APS, v. 99, n. 3, p. 032301, 2019.

RHODES, M. L.; WONG, T. G. Search on vertex-transitive graphs by lackadaisical

quantum walk. Quantum Information Processing, Springer, v. 19, n. 9, p. 1–16, 2020.

SAHA, A. et al. Faster search of clustered marked states with lackadaisical quantum walks.

Quantum Information Processing, Springer, v. 21, n. 8, p. 275, 2022.

SHENVI, N.; KEMPE, J.; WHALEY, K. B. Quantum random-walk search algorithm.

Physical Review A, APS, v. 67, n. 5, p. 052307, 2003.

SILVA, R. R. da. Utilizaçao do Algoritmo de Grover para o Treinamento de Redes

Neurais Artificiais Clássicas. 93 p. Dissertation (Mestrado em Ciência da Computação) —

Universidade Federal Rural de Pernambuco, Recife, PE, 2014.

SOUZA, L. S.; CARVALHO, J. H. A.; FERREIRA, T. A. E. Classical artificial neural

network training using quantum walks as a search procedure. IEEE Transactions on

Computers, IEEE, 2021.

90

SOUZA, L. S.; CARVALHO, J. H. A.; FERREIRA, T. A. E. Lackadaisical quantum walk

in the hypercube to search for multiple marked vertices. In: BRITTO, A.; DELGADO,

K. V. (Ed.). Brazilian Conference on Intelligent Systems. Cham: Springer International

Publishing, 2021. p. 249–263.

TANAKA, H.; SABRI, M.; PORTUGAL, R. Spatial search on johnson graphs by

discrete-time quantum walk. Journal of Physics A: Mathematical and Theoretical, IOP

Publishing, v. 55, n. 25, p. 255304, 2022.

WONG, T. G. Grover search with lackadaisical quantum walks. Journal of Physics A:

Mathematical and Theoretical, v. 48, n. 43, p. 435304, 2015.

WONG, T. G. Coined quantum walks on weighted graphs. Journal of Physics A:

Mathematical and Theoretical, IOP Publishing, v. 50, n. 47, p. 475301, 2017.

ZHANG, J.; XIANG, Y.; SUN, W. A discrete random walk on the hypercube. Physica A:

Statistical Mechanics and its Applications, Elsevier, v. 494, p. 1–7, 2018.

91

ANNEXES

On Applying the Lackadaisical Quantum Walk Algorithm to

Search for Multiple Solutions on Grids

Jonathan H. A. de Carvalho∗1, Luciano S. de Souza2, Fernando M. de Paula
Neto1, and Tiago A. E. Ferreira2

1Centro de Informática, Universidade Federal de Pernambuco, Recife,
Pernambuco, Brazil

{jhac,fernando}@cin.ufpe.br
2Departamento de Estat́ıstica e Informática, Universidade Federal Rural de

Pernambuco, Recife, Pernambuco, Brazil
{luciano.serafim,tiago.espinola}@ufrpe.br

Abstract

Quantum computing promises to improve the information processing power to levels
unreachable by classical computation. Quantum walks are heading the development of
quantum algorithms for searching information on graphs more efficiently than their clas-
sical counterparts. A quantum-walk-based algorithm standing out in the literature is the
lackadaisical quantum walk. The lackadaisical quantum walk is an algorithm developed to
search graph structures whose vertices have a self-loop of weight l. This paper addresses
several issues related to applying the lackadaisical quantum walk to search for multiple so-
lutions on grids successfully. Firstly, we show that only one of the two stopping conditions
found in the literature is suitable for simulations. In the most discrepant case shown here,
a stopping condition is prematurely satisfied at the step T = 288 with a success proba-
bility Pr = 0.593276, while the suitable condition captures the actual amplification that
occurred until T = 409 with Pr = 0.878178. We also demonstrate that the final success
probability depends on both the space density of solutions and the relative distance between
solutions. For instance, we show here that decreases in the density of solutions can even
take a success probability of 0.849178 to 0.961896. In contrast, increases in the relative
distances can even take a success probability of 0.871665 to 0.940301. Furthermore, this
work generalizes the lackadaisical quantum walk to search for multiple solutions on grids
of arbitrary dimensions. In addition, we propose an optimal adjustment of the self-loop
weight l for such d-dimensional grids. It turns out other fits of l found in the literature are
particular cases. Our experiments demonstrate that successful searches for multiple solu-
tions with higher than two dimensions are possible by achieving success probabilities such
as 0.999979, with the value of l proposed here, where it would be 0.637346, with the value of
l proposed in previous works. Finally, we observe a two-to-one relation between the steps of
the lackadaisical quantum walk and Grover’s algorithm, which requires modifications in the
stopping condition. That modified stopping condition can escape intermediary fluctuations
that would produce premature stops at T = 6 with Pr = 0.000878 where the system can
evolve until T = 354 with Pr = 0.99999, as an example that we show here. In conclusion,

∗Corresponding author

1

ar
X

iv
:2

10
6.

06
27

4v
2

 [
qu

an
t-

ph
]

 9
 J

an
 2

02
3

this work deals with practical issues one should consider when applying the lackadaisical
quantum walk, besides expanding the technique to a broader range of search problems.

1 Introduction

Quantum computing is expected to demonstrate supremacy [1] over classical computing through
the exploration of inherently quantum phenomena such as superposition and entanglement [2].
The opportunities that emerge from the quantum realm have attracted significant efforts in
research areas like information security [3], decision making [4], artificial neural networks [5],
and optimization [6]. Regarding optimization, the scientific community is actively developing
quantum or even quantum-inspired meta-heuristics of search, such as genetic algorithms and
particle swarm optimization [7, 8, 9]. Searching is one of the tasks where quantum computing
has the most known examples of speedup over classical counterparts, mainly due to the algorithm
proposed by Grover [10]. Grover’s algorithm can successfully search for a single element within
a disordered array of N items in O(

√
N) steps, which is a quadratic speedup over the classical

analogs.
However, if the task is a spatial search, Benioff [11] showed that a quantum robot using

Grover’s algorithm is no more efficient than a classical robot because both require O(N log
√
N)

steps to search 2-dimensional grids of size
√
N x

√
N . It makes room for employing other

techniques to search for information on physical regions modeled as connected graphs [12], also
known as spatial search problems. Then, in pursuit of the speedup that Grover’s algorithm failed
to provide, researchers addressed that type of problem using quantum walks. First, Childs and
Goldstone [13] addressed a 2D spatial search problem using a continuous-time quantum walk
but failed to provide substantial speedup. On the other hand, Ambainis et al. [14] proposed an
algorithm capable of finding the solution in O(

√
N logN) steps using a discrete-time quantum

walk. Childs and Goldstone [15] showed later that a continuous-time model of quantum walks
can also achieve this same speedup.

Over time, quantum walks for other graph structures have been developed [16, 17, 18, 19,
20, 21, 22], but the attempts to improve the search on 2D grids also continued. In particular,
the lackadaisical quantum walk (LQW) developed in [23] has been drawing attention because
it improved the 2D spatial search by making a simple modification to the algorithm proposed
in [14]. The modification was to attach a self-loop of weight l at each vertex of the 2D grid.
Adding a new degree of freedom to enable staying at the same position had already been studied
for the quantum walk on the line [24], where analysis of time scaling [25], entanglement entropy
and temperature [26], and decoherence [27] have been made recently. The LQW, in turn, added a
weighted edge that points to the same vertex on the 2D grid. When the weight l of the self-loop
is optimally adjusted, the LQW can find the solution to the search problem in O(

√
N logN)

steps, which is an O(
√

logN) improvement over that loopless version presented in [14].
The LQW improvement was achieved by fitting the self-loop weight to l = 4/N , where N is

the total number of vertices. This optimal value is only one instance of a general observation
about the LQW searching vertex-transitive graphs with m = 1 solutions. For these cases, the
optimal value of l equals the degree of the graph without loops divided by N [28]. An analytical
proof of this conjecture is given in [29] using the fact that the quantum interpolated walk can
approximate the LQW. However, that conjecture about the adjustment of l does not hold when
the grid’s number of solutions m is higher than 1. Thus, another adjustment of l is required.
Nahimovs [30] proposed two adjustments of l for arbitrary placements of the solutions, both in

the form l = 4(m−O(m))
N . After that, Giri and Korepin [31] showed that one of these m solutions

can be obtained with sufficiently high probability in O(
√

N
m log N

m) steps. Saha et al. [32] showed

2

that l ≈ 4
N(m+1) is the optimal value for the exceptional configuration of m solutions arranged

as a block of
√
m x

√
m within the grid.

This paper is a solid continuation of the incipient conference paper presented in [33]. Fig-
ure 1 shows a general flowchart of our complete research, which is an extensive experimental
analysis of the LQW search algorithm. The main flow represents the studies performed here,
linked by connectors. Previous knowledge and the knowledge discovered in this research are
linked to the main flow by arrows. Each study is decomposed into minor activities with their
intermediary contributions, which compose all the knowledge provided by this research to the
scientific community.

From the previous efforts related to the search on 2D grids by the LQW algorithm, one of
the ideas that can be learned is that the simulations should stop according to two interchange-
able stopping conditions. However, we demonstrate through a convergence analysis that LQW
simulations should stop according to the stopping condition used in [23] only because that con-
dition captures the maximum amplification of the system. In contrast, the stopping condition
used in [30] is satisfied prematurely, i.e., when the system can evolve even further. After, we
investigate the impacts of solution setups on the final success probabilities achieved by the LQW
algorithm. As a result, we show that the final success probability is inversely proportional to
the space density of solutions and directly proportional to the relative distance between solu-
tions. Those results have already been corroborated and extended in the literature. Nahimovs
and Santos [34] showed that the success probability is inversely proportional to the density of
solutions not only on rectangular 2D grids but also on triangular and honeycomb 2D grids.

We finally consolidate the work by addressing the search for multiple solutions on d-dimensional
grids. As the first step in this direction, we generalize the LQW algorithm to such a new scenario
by rewriting its mathematical formalism. In this way, we enable the LQW to search for solutions
with arbitrary dimensions. Retrieving higher than two quantities per solution is supposed to
enlarge the spectrum of applications. For example, one application we glimpse is to use the
LQW to search all weights and biases of artificial neural networks, inspired by works that ap-
plied a lackadaisical quantum walk for complete graphs [35, 36]. As quantum information routing
by quantum walks can benefit from high dimensional cases [37], spatial information search by
quantum walks can also. For example, spatial search by quantum walks on sufficiently high
dimensions can allow the full O(

√
N) speedup, which is unfeasible in low dimensions [12, 13].

Thus, the solution to the search problem may be retrieved even faster.
Proceeding to the application of the generalized LQW, a new optimal self-loop weight becomes

necessary to achieve success in d-dimensional grids. We then propose a generalized adjustment
for the value of l. It turns out that other fits reported in the literature [23, 28, 30] are particular
cases. The adjustment of l proposed here has already been used in the literature as evidence to
consider the number of solutions in the value of l when searching hypercubes [38]. Finally, we
observe a two-to-one relation between the steps of the LQW and the steps of Grover’s algorithm,
which requires a modification in the stopping condition. In conclusion, this work addresses
several practical issues that are critical to the successful application of the LQW algorithm when
searching for multiple solutions on grids.

This paper is organized as follows. Section 2 presents the theoretical background about the
task of search on 2D grids by the LQW algorithm. Here, the reader is expected to be familiar
with the basics of quantum computing. If it is not the case, knowledge from the basic to the
advanced levels can be obtained in [2, 39]. Section 3 compares the different stopping conditions
used in previous works. After, Section 4 relates the impacts on the final success probability
to both the space density of solutions and the relative distance between solutions. Section 5
includes generalizing the LQW to grids of arbitrary dimensions with multiple solutions, finding
a new optimal value of l, and modifying the stopping condition to tolerate a meaningful kind of

3

Analysis by
Monitoring
Success

Probabilities

LQW on
2D Grids

Convergence Analysis
of Stopping Conditions

Impacts of
Solution Setups

on Final
Success Probabilities

Search for
Multiple Solutions

on d-dimensional Grids

LQW for
Multiple Solutions

on Grids

Maximum
Amplification

Premature
Stops

Analysis by
Monitoring
Absolute

Inner Products

Directly
Proportional

Relation

Inversely
Proportional

RelationImpacts due to
Space Densities

Impacts due to
Relative Distances

Mathematical
Formalism
Rewritten

New
Self-Loop

Weight

Modified
Stopping
Condition

Generalization
of the LQW

Application
of the LQW

Relation Between
the LQW and

Grover’s Algorithm

Begin

End

Figure 1: General flowchart representing the studies contemplated in this work, linked by con-
nectors. Information that enters the process as previous knowledge or leaves the process as
contributions are linked to the main flow through arrows. Each study is subdivided into minor
activities in a more detailed view, where intermediary contributions are also presented.

4

fluctuation. Finally, Section 6 presents concluding remarks.

2 Search with the Lackadaisical Quantum Walk

The classical random walk is a probabilistic movement in which a particle jumps to its adjacent
positions based on the outcome of a non-biased random variable at each step [40]. Generally,
the random variable is a fair coin with one degree of freedom for each possible direction of
movement in the space at hand. This simple concept can also support sophisticated approaches
to practical problems, such as random-walk-based recommendations of potential lenders in peer-
to-peer lending [41].

The quantum walk, in turn, is a generalized concept compared to the classical random walk.
That high-level idea of conditioned movements remains, but quantum operations are responsible
for evolving the system. In this context, quantum properties such as interference and superpo-
sition allow the quantum walk to spread quadratically faster than the classical one [40]. This
advantage, therefore, can be used to search spatial regions more efficiently [42].

2.1 Spatial Search with a Quantum Walk

Ambainis et al. [14] proposed a quantum walk algorithm to search a single vertex, also called
the marked vertex, in the 2-dimensional grid of L × L = N vertices. In that work, the process
evolved on the Hilbert space H = HC ⊗HP , where HC is the 4-dimensional coin space, spanned
by {|↑〉 , |↓〉 , |←〉 , |→〉}, and HP represents the N -dimensional space of positions, spanned by
{|x, y〉 : x, y ∈ [0, . . . , L− 1]}.

Firstly, the coin toss is accomplished by the operator C presented in Equation 1, which
combines the coin operators C0 and C1 in such a way that C1 is applied only to the marked state
|v〉, while C0 is applied to the others. This idea of different evolution regimes for marked and
unmarked vertices was introduced in [17]. Particularly, Ambainis et al. [14] defined C0 as the
Grover diffusion coin: C0 = 2 |s〉 〈s| − I4, where |s〉 = 1

2 (|↑〉 + |↓〉 + |←〉 + |→〉) and I4 denotes
the 4-dimensional identity operator. Finally, C1 was defined as −I4. Thus, −I4 is applied to the
marked state, while the Grover diffusion coin is applied to the others.

C = C0 ⊗ (I4 − |v〉 〈v|) + C1 ⊗ |v〉 〈v| (1)

Then, the flip-flop shift operator Sff is applied to move the quantum particle while inverting

the coin state, as presented in Equation 2. This shift works mod
√
N = L because the grid has

periodic boundary conditions. Finally, the quantum walk is a repeated application of the operator

U = Sff ·C to the quantum system |ψ〉, which begins in the state |ψ(0)〉 = 1√
N

∑√N−1
x,y=0 |s〉⊗|x, y〉.

Sff |→〉 |x, y〉 = |←〉 |x+ 1, y〉
Sff |←〉 |x, y〉 = |→〉 |x− 1, y〉
Sff |↑〉 |x, y〉 = |↓〉 |x, y + 1〉
Sff |↓〉 |x, y〉 = |↑〉 |x, y − 1〉

(2)

As a result, the marked vertex can be obtained at the measurement with a probability
O(1/ logN) after T = O(

√
N logN) steps. To achieve a success probability near to 1, am-

plitude amplification [43] was applied, which implied additional O(
√

logN) steps. Hence, the
total running time of this quantum-walk-based search algorithm is O(

√
N logN).

5

2.2 Improved Running Time by the Lackadaisical Quantum Walk

The LQW search algorithm [23] is an approach strictly based on the algorithm designed in [14]
that we just discussed. The main modification is to attach a self-loop of weight l at each vertex
of the 2D grid, which implies other changes in the loopless technique. First, HC is spanned
now by {|↑〉 , |↓〉 , |←〉 , |→〉 , |	〉} because of the new degree of freedom. However, no changes are
required for HP .

Regarding the coin operator, C0 was defined as the Grover diffusion coin for weighted
graphs [44], so C0 = 2 |sc〉 〈sc| − I5, where |sc〉 is the non-uniform distribution presented in
Equation 3, and I5 denotes the 5-dimensional identity operator. Also, better results were found
when C1 = −C0, outperforming that choice of C1 = −I used in [14]. About the shift operator
Sff , it works like an identity operator when applied to |	〉 |x, y〉. Finally, the quantum sys-
tem |ψ〉 begins in a uniform distribution between all vertices with their edges in the weighted
superposition |sc〉 presented in Equation 3 instead of the uniform |s〉.

|sc〉 =
1√

4 + l
(|↑〉+ |↓〉+ |←〉+ |→〉+

√
l |	〉) (3)

As a result, the LQW with l = 4/N finds the marked vertex with a success probability close
to 1 after T = O(

√
N logN) steps. It is an O(

√
logN) improvement over the loopless algorithm.

More sophisticated approaches can also achieve this improvement in the running time, like in [45],
but the LQW is a significantly simpler and equally capable technique. Moreover, the success
probability converges closer and closer to 1 if the number of vertices N increases when using that
optimal l.

Those numerical results reported in [23] were found by simulations that stopped when the
first peak in the success probability occurred. For that, the stopping condition monitored the
success probability at each step. When the current value was smaller than the immediately
previous one for the first time, the simulation stopped, and this immediately previous result was
reported as the maximum found.

2.3 Lackadaisical Quantum Walk with Multiple Solutions

If there are multiple marked vertices, i.e., multiple solutions in the search space, the LQW results
for the case with only one solution do not hold. Such cases with multiple solutions require new
optimal choices of the self-loop weight l. In this way, Nahimovs [30] optimally adjusted the value
of l for the cases where m solutions are randomly sampled within the 2D grid.

This multiple-solution adjustment of l occurred by searching for new optimal values in the
form l = 4

N · a, where a is a modifiable multiplicative factor. Thus, l was adjusted as a factor of
the optimal value for m = 1 reported in [23], which was l = 4/N . As a result, two adjustments

were proposed: l = 4m
N , for small values of m, and l = 4(m−√m)

N , for large values of m. To
find these optimal values of l, the m solutions were arranged following the Mm set presented in
Equation 4. However, random placements of solutions yielded similar results.

Mm = {(0, 10i) | i ∈ [0,m− 1]} (4)

Regarding the simulations performed in [30], a different stopping condition was used rather
than monitoring the success probability at each step. Alternatively, the inner product |〈ψ(t)|ψ(0)〉|
was monitored until its minimum was achieved, so the simulation stopped when this inner prod-
uct became close to 0 in absolute value for the first time.

6

Table 1: Convergence step T and final success probability Pr, as the number of solutions m

increases, for the different stopping conditions used in previous works with l = 4(m−√m)
N .

m
Stopping Conditions

Marked Vertices |〈ψ(t)|ψ(0)〉|
T Pr T Pr

1 399 0.140828 420 0.138489
5 409 0.878178 288 0.593276
10 297 0.867440 249 0.704010
15 290 0.835395 254 0.747045
20 288 0.818635 268 0.778724

3 Comparison between Different Stopping Conditions

It is possible to find two stopping conditions in the literature regarding the LQW simulations.
One of them is to monitor the success probability until its maximum is achieved [23], where
“success probability” refers to the probability of measuring a marked vertex (a solution to the
search problem). Here, we name this stopping condition as “Marked Vertices”. The other
stopping condition found in the literature is to monitor the inner product |〈ψ(t)|ψ(0)〉| until its
minimum is achieved [30]. However, as the convergence of those stopping conditions has not
been compared, their interchangeability became an open question. Therefore, before conducting
further experimental analysis of the LQW search algorithm, we verified whether those conditions
converge to the same points from equal initial settings.

We conducted experiments using a setup equal to the one used in [30], i.e., a grid of 200 x 200
vertices with the m solutions following the Mm set. Constrained by this Mm scheme, up to 20
solutions can be placed in that space, since M20 = {(0, 0), (0, 10), . . . , (0, 180), (0, 190)}. Placing
more than 20 solutions in the 200 x 200 grid would require an organization other than the Mm

set so that the grid limits would not be extrapolated. However, as we used the Mm scheme, we
made experiments with 1, 5, 10, 15 and 20 solutions in the grid.

As a result, the stopping conditions converged to the same points for l = 4m
N , suggesting that

the stopping conditions are equivalent. However, it is not the case for l = 4(m−√m)
N . Table 1

contrasts the results obtained for l = 4(m−√m)
N when monitoring both the marked vertices and

the inner product |〈ψ(t)|ψ(0)〉|. As can be seen, the results tend to converge to the same points
as m increases. Nevertheless, the conditions were not equivalent because each was satisfied at
a different step T , which implied different final success probabilities Pr. Also, monitoring the
inner product |〈ψ(t)|ψ(0)〉| generated lower success probabilities in all cases.

Step by step, the system evolution was stored to investigate the divergence carefully. Figure 2
shows the evolution of the m = 5 case, which has the most significant discrepancy in Table 1.
The solid black line represents the condition that monitors the marked vertices, while the dashed
blue line represents the one that monitors the inner product |〈ψ(t)|ψ(0)〉|.

As reported in Table 1, the condition that monitors the inner product in absolute value is
satisfied prematurely at the step T = 288. It is said premature because the success probability
continues increasing until T = 409. After the step T = 288, though, the curves have a similar
growth damping, which raised a question about monitoring the real value of the inner product
rather than its absolute value.

Figure 3 shows the system evolution during 1000 steps. As before, the monitoring of the
marked vertices is represented by the solid black line. At this time, the inner product is monitored
without calculating its absolute value, represented by the dashed green line. Note that both

7

0 50 100 150 200 250 300 350 400
Quantum Steps

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc
es
s P

ro
ba

bi
lit
y

0.0

0.2

0.4

0.6

0.8

1.0

In
ne

r P
ro
du

ct
 in

 A
bs

 V
al
ue

Figure 2: System evolution step by step until the condition that monitors the marked vertices is
satisfied. The solid black line monitors that condition, while the dashed blue line monitors the
inner product in absolute value.

curves have the same behavior. Therefore, it is possible to conclude that the stopping conditions
used in previous works are equivalent if, and only if, the inner product is considered without
calculating its absolute value. Otherwise, only the condition that monitors the marked vertices
leads to the real amplitude amplification achieved by the LQW search algorithm.

In this manner, all results discussed in this work from now on were found using the stopping
condition that monitors the marked vertices. Since the objective is to measure the quantum sys-
tem when the maximum amplification in the success probability occurs, monitoring the marked
vertices is the most natural choice to define when the simulation should stop.

4 Solution Setups Affecting the Success Probability

After choosing the stopping condition properly in Section 3, we now move forward to addressing
factors that affect the final success probability achieved by the technique. Previous works have
already demonstrated the considerable dependence of the LQW algorithm on the self-loop weight
l [23, 30]. Expanding those analyses, we address the density of solutions and the relative distance
between solutions.

4.1 Previous Evaluations of Solution Densities and a Complementary
Experiment

The experiments performed by Wong [23] and Nahimovs [30] can reveal some dependence between
the success probability and the space density of solutions ρ, where ρ = m

N . However, such works
did not link the density of solutions and the success probability achieved at the end of the
simulation. Here, we briefly discuss these previous experiments identifying the impacts of ρ.
Finally, a complementary experiment was performed.

Firstly, Wong [23] investigated the impacts of adding more unmarked vertices in a grid with
only one solution. That experiment evaluated how decreases in the density of solutions could

8

0 200 400 600 800 1000
Quantum Steps

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Su
cc
es
s P

ro
ba

bi
lit
y

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

In
ne

r P
ro
du

ct

Figure 3: System evolution step by step during 1000 steps. The solid black line monitors the
marked vertices, while the dashed green line monitors the inner product without calculating its
absolute value.

affect the final success probability. As a result, the success probability tends to improve, even
though some disturbed behavior for the first values of N exists.

After that, Nahimovs [30] inserted more and more solutions in the 200 x 200 grid when
adjusting the value of l for multiple marked vertices. Since the grid size was fixed, that experiment
increased the density of solutions with each new vertex being marked. However, the probability
of measuring a marked vertex was smaller when m increased. It would be a counter-intuitive
idea in a classical world.

It is possible to comprehend the dependence between the total number of vertices N , the
number of solutions m, and the final success probability observing Grover’s algorithm [40]. Con-
sider |ω〉 as the state where the total energy of the quantum system is equally distributed only
between the marked states, so the success probability is 1. The goal of Grover’s algorithm is to
rotate the system’s state |ψ〉 to get as close to |ω〉 as possible. However, this is an iterative process
in which |ψ〉 rotates at each step by an angle θ. As θ is inversely proportional to N , increasing
N implies more steps T , but these fine rotations turn |ψ〉 closer to |ω〉 as N increases, explaining
the results of Wong [23]. As θ is proportional to m, increasing m implies fewer steps T if N � m,
although |ψ〉 gets less close to |ω〉 at the end, explaining the smaller success probabilities in the
experiments of Nahimovs [30] while m increased.

Thus, these previous experiments suggest that the success probability is inversely proportional
to the density of solutions within the grid due to having a more refined or less refined angle θ in
Grover’s rotations, as explained. In this work, a complementary experiment was made to fill the
gap not addressed by those previous works: decreasing the density of solutions, like in [23], in
a grid with multiple marked vertices, like in [30]. While we conducted this experiment, we also
searched for the optimal value of l in the form l = 4

N a, like in [30] again.
Figure 4 shows the peaks in the success probability, represented by the solid black line, and

the optimal a values that generated these peaks, represented by the dashed brown line, both as
functions of N . The density of solutions decreased in this case because m was always equal to
10, while N increased by adding unmarked vertices. The optimal values of a were searched with
a step size of 0.5, and N varied from 104 to 106 with the m = 10 solutions following the M10 set.

Again, there is a disturbed behavior for the first values of N , like in [23]. Afterward, the
success probability tends to 1, and the optimal value of a tends to the number of solutions

9

200000 400000 600000 800000 1000000
N

0.86

0.88

0.90

0.92

0.94

0.96

Su
cc

es
s P

ro
ba

bi
lit
y

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

a

Figure 4: Peaks in the success probability, represented by the solid black line, and respective
optimal values of a, represented by the dashed brown line, both as functions of N , with the
m = 10 solutions located in the 2D grid according to the M10 set.

m = 10. This experimental result suggests that the construction l = 4(m−O(m))
N proposed in [30]

is a way of adjusting for the cases where the density of solutions is not small enough. In the best
cases of solutions density, a equals m and, consequently, l = 4m

N .

4.2 A New Set of Solutions Increasing Relative Distances

In the last experiment, the m = 10 solutions were located always at the points {(0, 0), (0, 10), . . . ,
(0, 90)}, following the M10 set. That solutions distribution did not take advantage of the gradual
increment in the total number of vertices N . If the solutions were located far from each other,
it would be possible to continue evaluating how the success probability depends on the density
of solutions but also on the relative distance between solutions.

Thus, we propose an alternative to the Mm set that is the PL,m set presented in Equation 5.
Following this new set, the m solutions are located depending on the number of vertices in each
dimension L so that the grid size is better used. For example, m = 10 solutions on the 200 x
200 grid would be located at the points {(0, 0), (20, 20), . . . , (180, 180)}, following the P200,10 set.
Hence, the solutions are farther apart using the PL,m set than the Mm set.

PL,m =

{(⌊ L
m

⌋
i,
⌊ L
m

⌋
i

) ∣∣∣ i ∈ [0,m− 1]

}
(5)

Then, our complementary experiment that evaluated decreases in the density of solutions
with m = 10 solutions was redone, but using the PL,m set this time to localize the solutions
farther from each other. The results obtained with this new set of solutions are contrasted in
Table 2 with the ones obtained previously, which used the Mm set. The success probabilities in
Table 2 for the Mm set are precisely the ones already presented in Figure 4 but in terms of L
now because L is the variable used to define the PL,m set. It is worth reminding that L2 = N .

For all values of L, the set of solutions PL,m generated better results because the success
probability was higher and with fewer steps. Besides this, the disturbed behavior for the first
values of L did not appear in the results with the new set of solutions. Finally, it is possible to

10

Table 2: Number of steps T and final success probability Pr as L increases for different sets of
m = 10 solutions.

L
Mm=10 PL,m=10

T Pr T Pr
100 147 0.849178 109 0.902339
200 293 0.889219 223 0.927680
300 511 0.871665 342 0.940301
400 747 0.908749 460 0.948348
500 965 0.930714 581 0.953927
600 1181 0.943863 700 0.958288
700 1407 0.951843 822 0.961646
800 1623 0.956787 941 0.964317
900 1857 0.959761 1063 0.966613
1000 2097 0.961896 1187 0.968522

Table 3: Values of m that do not have asymptotic and growing behaviors for the success proba-
bility as the density of solutions decreases.

L
Pr

m = 3 m = 4 m = 5
100 0.991433 0.986119 0.981772
200 0.988165 0.992391 0.990397
300 0.985744 0.993451 0.992697
400 0.984221 0.993206 0.993754
500 0.983418 0.992604 0.994283
600 0.983100 0.991933 0.994585
700 0.983081 0.991282 0.994717
800 0.983252 0.990683 0.994677
900 0.983548 0.990138 0.994557
1000 0.983927 0.989644 0.994392

conclude from these numerical results that the success probability is directly proportional to the
relative distance between solutions.

Regardless of whether or not a disturbed behavior exists for the first values of L, the success
probability had an asymptotic and growing behavior for higher values of L in all previous cases
discussed here. However, that is not true for all values of m. Table 3 shows the same investigation
of decreases in the density of solutions with the PL,m set again, but for m = {3, 4, 5}, and not
for m = 10 as before.

The qualitative behaviors found for these m values are not equal to the behaviors for both
m = 1, as reported in [23], and m = 10, as shown in Figure 4 and Table 2. In those m = 1 and
m = 10 cases, a disturbed behavior existed during a transition from small to high values of L,
and then the success probability improved continuously. However, m = {3, 4, 5} can be seen as a
kind of transition from small to high values from the perspective of the number of solutions m.
It suggests that the asymptotic and growing behavior for the success probability as the density
of solutions decreases is only guaranteed for values high enough of both L =

√
N and m.

11

1 2 3 4 5 6 7 8 9 10
m

0.90

0.92

0.94

0.96

0.98

1.00

Su
cc
es

s P
ro
ba

bi
lit
y

100
200
300
400
500
600
700
800
900
1000

Figure 5: Final success probability as the density of solutions increases with the solutions fol-
lowing the PL,m set. The colored lines represent grids with different numbers L of vertices per
dimension.

4.3 Evaluation of Density Increasing with the New Set of Solutions

The density of solutions within the grid affects the final success probability achieved by the
LQW algorithm. We already analyzed decreases in the solution density by adding unmarked
vertices using both the Mm and PL,m sets. Regarding increases in the density of solutions, we
complement this analysis here using the PL,m set since results using the Mm set are found in [30].
Increases in the density of solutions occur by having more marked vertices in a fixed-size grid of
L x L.

Figure 5 shows the final success probability as a function of the number of solutions m for
grids with different numbers L of vertices per dimension. The colored lines represent the results
for grids with L varying from 100 to 1000 and with the number of solutions m = {1, 2, . . . , 10}
following the PL,m set.

As expected, because of the inversely proportional relation, the success probability decreases
as the density of solutions increases by having more solutions in the grid. However, these results
with the PL,m set also had that transitory phenomenon. There are intervals where a disturbed
behavior exists for all cases, and then the success probability tends to decrease continuously.

This result constitutes one more perspective that shows some uncertainty about the behavior
of the LQW algorithm with small values of some input parameters. Thus, it is more confident
to apply the LQW search algorithm in real scenarios where the input parameters are higher to
avoid all those disturbed behaviors.

5 Lackadaisical Quantum Walk on d-dimensional Grids

Marking a vertex as a solution in the two-dimensional case means that its coordinates x and
y satisfy the search problem when combined. Searching and retrieving only two values can
be a limitation because more than two quantities may be required to solve some applications.
The idea here is to expand the technique to search for solutions with an arbitrary number of

12

dimensions, which implies walking through grids with higher than two dimensions. The new
capacity is supposed to expand the spectrum of applications of the LQW search algorithm. In
the following, the mathematical formalism is redefined, the self-loop weight l is adjusted, and
the stopping condition is revisited, all of this considering practical issues that arise in scenarios
with arbitrary dimensions.

5.1 Generalization to d-dimensional Grids

Here, the mathematical formalism is rewritten to the search with the LQW algorithm on grids of
higher dimensions. Fortunately, the generalization is straightforward from the two-dimensional
formulation, demonstrated in the following algebra. Besides that, we discuss some aspects in-
volving classical simulations of the generalized technique in grids of arbitrary dimensions.

Considering a grid with d dimensions, each vertex has 2d+ 1 possible directions of movement
because each dimension has a positive and a negative direction, and there is a self-loop attached to
the vertex. In a generalized way, the coin spaceHC is spanned by {|⇑1〉 , |⇓1〉 , . . . , |⇑d〉 , |⇓d〉 , |	〉},
where ⇑i and ⇓i represent the movements on the i-th dimension. The computational basis for
the space of positions HP is {|x1, . . . , xd〉 : xi ∈ [0, . . . , d

√
N − 1]}. Thus, the quantum walk

evolves on the space H = HC ⊗HP with these generalized reformulations.
The action of applying C1 = −C0 to the solutions and C0 to the other vertices can be replaced

by an oracle that is used first, followed by C0 acting on all vertices indistinguishably. Since the
oracle flips the signs of all m marked vertices, the overall effect is to apply −C0 to the marked
vertices and C0 to the others. Using an oracle, C does not need to be broken down into two
different coin operators, so C = C0. In a generalized form, the coin operator is now defined as
C = 2 |sc〉 〈sc| − I2d+1, where |sc〉 is the generalized distribution presented in Equation 6.

|sc〉 =
1√

2d+ l
(|⇑1〉+ |⇓1〉+ . . . + |⇑d〉+ |⇓d〉+

√
l |	〉) (6)

For the purpose of applying that coin operator C, the outer product |sc〉 〈sc| can be written
in the matrix form as follows:

|sc〉 〈sc| =
1√

2d+ l

1
...
1√
l

 ·

1√
2d+ l

(
1 . . . 1

√
l
)

=
1

2d+ l

1 . . . 1
√
l

...
...

...
...

1 . . . 1
√
l√

l . . .
√
l l

 .

Let |φ〉 be a quantum state of the generalized coin space HC , i.e., |φ〉 = (α1, . . . , α2d, α2d+1)T .
Thus, the application of the coin operator C in that generic quantum state is as follows:

13

(2 |sc〉 〈sc| − I2d+1) |φ〉 = 2 |sc〉 〈sc| |φ〉 − I2d+1 |φ〉

= 2 · 1

2d+ l

1 . . . 1
√
l

...
...

...
...

1 . . . 1
√
l√

l . . .
√
l l

α1

...
α2d

α2d+1

−

1 . . . 0 0
...

...
...

...
0 . . . 1 0
0 . . . 0 1

α1

...
α2d

α2d+1

= 2 · 1

2d+ l

α1 + . . .+ α2d +
√
l · α2d+1

...

α1 + . . .+ α2d +
√
l · α2d+1√

l · (α1 + . . .+ α2d +
√
l · α2d+1)

−

α1

...
α2d

α2d+1

 .

Defining λ as:

λ =
1

2d+ l
(α1 + . . .+ α2d +

√
l · α2d+1),

the application of the coin operator C comes down to:

(2 |sc〉 〈sc| − I2d+1) |φ〉 =

2λ− α1

...
2λ− α2d

2λ
√
l − α2d+1

 .

It is precisely the result expected when the weighted Grover diffusion coin is applied. Since
λ is not the mean of the coin amplitudes, the inversion is about a mean that takes into account
the weight of the graph edges rather than the simple arithmetic mean [44]. All this worked out
also in the generalized form.

Regarding classical simulations, the coefficients α1, · · · , α2d must be handled in a flexible and
generalized way according to the total number of dimensions, besides considering the loop weight
appropriately to normalize the quantum state. It turns out that the simulation is similar to the
one developed by Wong [23], but considering the generalized relations stated here when it comes
to the coin operator.

About the flip-flop shift operator Sff , there is also no restriction to generalize it. The intuition
behind this operator is to transfer energy between vertices in a dimension-per-dimension way.
At a step, what is happening in one dimension for a vertex does not affect what is happening in
another dimension for the same vertex. For example, in each step, a vertex |v〉 stores on its state
|⇑i〉 the energy coming from the state |⇓i〉 of the vertex immediately following on the direction
⇑i, and vice versa. Note that, for that dimension, the others do not cause interference.

Therefore, the operator Sff can be generalized by acting on each dimension separately, as
presented in Equation 7. That pattern of dimension-wise energy transfer simplifies an abstraction
for a classical simulation. In each step, through a double for-loop, the implementation can
replicate the operation in each dimension one by one for each vertex.

Sff |⇑i〉 |x1, . . . , xi, . . . , xd〉 = |⇓i〉 |x1, . . . , xi + 1, . . . , xd〉
Sff |⇓i〉 |x1, . . . , xi, . . . , xd〉 = |⇑i〉 |x1, . . . , xi − 1, . . . , xd〉

(7)

As before, the energy stored in the self-loop remains unchanged after an application of the
flip-flop shift operator, i.e., Sff |	〉 |x1, . . . , xi, . . . , xd〉 = |	〉 |x1, . . . , xi, . . . , xd〉. Thus, no con-

14

Table 4: Number of steps and final success probability for some cases in grids with higher than
two dimensions using l = 4m

N and the Pd,L,m set.

d L m T Pr
3 32 8 134 0.958805
4 16 4 257 0.888795
5 10 5 285 0.816259
6 8 4 441 0.739591

siderations are needed for generalization. As the space topology is torus-like because of the
periodic boundary conditions, the shift operates mod d

√
N .

Finally, the system begins in the uniform distribution between each of the N vertices of the
d-dimensional grid with the weighted superposition of coin states generalized in Equation 6. The
step where the simulation stops depends on a stopping condition. As we already demonstrated
in Section 3, the more appropriate stopping condition is to monitor the success probability
until achieving its maximum. Now, the LQW algorithm can be simulated on higher-than-two-
dimensional grids with multiple solutions.

5.2 Application on d-dimensional Grids

To conduct our experiments on d-dimensional grids, we locate the m solutions according to the
Pd,L,m set presented in Equation 8, which is a straightforward generalization of the PL,m set
already introduced in Equation 5. Therefore, each solution is a d-tuple, and the solutions are
equidistant on the grid’s main diagonal.

Pd,L,m =

{(⌊ L
m

⌋
i, · · · ,

⌊ L
m

⌋
i

)

d

∣∣∣ i ∈ [0,m− 1]

}
(8)

Experiments can be performed on grids of higher dimensions since the technique, the stopping
condition, and the solution setup are described. The number of steps T and the final success
probability Pr for some d-dimensional cases are presented in Table 4. Note that the success
probability decreases as the number of dimensions increases, suggesting that the LQW algorithm
is ineffective in higher-than-two-dimensional scenarios.

Although L and m varied in the cases presented in Table 4, the density of solutions was small
enough and the relative distance between solutions was high enough to not affect substantially
at all. Thus, the final success probability deteriorated strictly due to increases in d. Those
deteriorated results were found setting l = 4m

N for being the optimal l on 2D grids, at least
for the best cases of solution densities. It makes room to search for even better adjustments
of the self-loop weight since research efforts have already demonstrated how critical adjusting
l is [23, 30]. The following experiment aims to verify whether another optimal value of l for d
higher than two exists.

As demonstrated in [23], l is inversely proportional to the number of vertices N . At the same
time, l is directly proportional to the number of solutions m [30]. Thus, the value of l depends
on the density of solutions ρ, where ρ = m

N . Preserving the relations found by those works, we
search for new fits of l in the form l = ρ · a, where a is a multiplicative factor. From those
previous works, the value of a would be 4, but we already showed in Table 4 that the LQW
deteriorates as d increases with such a value of a.

Figure 6a and Figure 6b show the final success probability as a function of that multiplicative
factor a for the 3D and 4D cases presented in Table 4, respectively. The result for a = 4 is marked

15

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

a

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc
es

s P
ro
ba

bi
lit
y

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10
.0

a

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Su
cc
es

s P
ro
ba

bi
lit
y

(b)

Figure 6: Final success probability as a function of a for the self-loop weight in the form l = ρ ·a.
To the left, results for the 3D case with L = 32 and m = 8. To the right, results for the 4D case
with L = 16 and m = 4. The black dot marks the results for a equal to 4, while the red dot
marks the best overall result found.

by the black dot, while the red dot marks the best overall result in the search. In both cases,
a = 4 is not optimal because other values generated better success probabilities. The best overall
result of each case could generate success probabilities near 1, while its distance to the a = 4
gets larger when d increases.

Regarding the other cases presented in Table 4, the best overall results in the search generated
success probabilities of 0.999933 for the 5D case and 0.999986 for the 6D case. In this way, it is
possible to conclude that the LQW algorithm can generate satisfactory results when applied in
grids with higher than two dimensions with multiple solutions. The results reported in Table 4
deteriorated because a equal to 4, proposed by previous works, is optimal only in the restricted
2D case.

Moreover, our results revealed a pattern. The best values of a found in the search were 6 for
the 3D case, 8 for the 4D case, 10 for the 5D case, and 12 for the 6D case. Thus, the experimental
results suggest that the optimal value of a is 2 · d, so the optimal value of l for d-dimensional
grids is l = ρ · 2d = 2dm

N . In the 2D case, l = ρ · 2 · 2 = 4m
N , as proposed in previous works.

More experimental evidence is presented in Table 5, which compares results obtained using the
l proposed in previous works (l = 4m

N) with the ones obtained using the l proposed in this work

(l = 2dm
N), for a variety of cases in higher than two dimensions.

For all cases, l = 2dm
N generated success probabilities near to 1, while l = 4m

N generated
inferior results that deteriorated further as d increased. For the cases presented in Table 5, not
only experiments with those two fits of l were made, but no other adjustment surpassed the result
of using l = 2dm

N , indicating that it is the optimal value for d-dimensional grids with multiple
solutions.

Therefore, this work becomes part of the community efforts that developed the LQW al-
gorithm by adjusting the self-loop weight optimally for different scenarios, as summarized in
Table 6. When there is a single solution in the search space, the optimal self-loop weight is
l = 2

N for 1D grids [31] and l = 4
N for 2D grids [23]. For vertex-transitive graphs in general,

l = V
N is the optimal value, where V is the valency of the graph [28]. In contrast, the optimal

16

Table 5: Number of steps and final success probability for some d-dimensional grids using the
value of l proposed in previous works, l = 4m

N , and the value proposed in this work, l = 2dm
N .

d L m
l = 4m

N l = 2dm
N

T Pr T Pr
3 32 4 187 0.959003 171 0.999531
3 64 8 381 0.959096 348 0.999736
4 16 2 364 0.888818 315 0.999912
4 30 3 1048 0.88888 907 0.99999
5 10 2 453 0.816318 377 0.999982
5 15 5 784 0.816322 658 0.999991
6 8 2 593 0.731387 600 0.999994
6 10 10 541 0.73811 525 0.999986
7 6 6 388 0.692785 354 0.99999
8 4 2 247 0.637346 295 0.999979

Table 6: Optimal self-loop weight proposed in different works that developed the LQW algorithm
to search distinct scenarios. Basically, the graph structure defines each scenario. The scenarios
are also characterized depending on the existence of a single solution or multiple solutions.

Work Graph Structure Solution Self-Loop Weight
Giri and Korepin [31] 1D grid Single l = 2

N
Wong [23] 2D grid Single l = 4

N

Rhodes and Wong [28] Vertex-transitive Single l = V
N

Souza et al. [38] Hypercube Multiple l = dm
N

Saha et al. [32] 2D grid Multiple l ≈ 4
N(m+1)

Nahimovs [30] 2D grid Multiple l = 4(m−O(m))
N

Nahimovs and Santos [34] 2D grid Multiple l = Vm
N

This work dD grid Multiple l = 2dm
N

value is l = dm
N when searching for multiple solutions on d-dimensional hypercubes [38].

Regarding 2D grids again, the adjustment l ≈ 4
N(m+1) is required if the multiple solutions are

arranged as a block [32]. In contrast, l = 4(m−O(m))
N is the optimal value for arbitrary placements

of the solutions [30]. Searching for multiple solutions on 2D grids with different valencies V
requires the value l = Vm

N to achieve optimal results [34]. This work, in turn, developed the
LQW algorithm to a scenario that was not covered in previous works. The optimal fit of l
proposed here, l = 2dm

N , successfully enables the LQW algorithm to search for multiple solutions
on d-dimensional grids.

5.3 Stopping Condition Revisited

As shown in Section 3, the more appropriate and natural choice of stopping condition is to
monitor the probability evolution about the m marked vertices until this quantity achieves its
maximum. The maximum is determined by finding a step whose success probability is smaller
than the immediately previous one. That approach assumes a function that increases monoton-
ically, achieves its maximum, and decreases monotonically after that maximum. However, it is
not the case in some examples on grids with higher than two dimensions.

Table 7 shows four exceptional cases that stopped at a considerably premature step by using

17

Table 7: Number of steps and final success probability for d-dimensional cases that prematurely
stopped using both the value of l proposed in previous works, l = 4m

N , and the value proposed

in this work, l = 2dm
N .

d L m
l = 4m

N l = 2dm
N

T Pr T Pr
5 10 2 24 0.009348 24 0.009374
5 15 3 24 0.001847 24 0.001848
5 15 5 14 0.001108 14 0.001108
7 6 6 6 0.000878 6 0.000878

0 20 40 60 80 100
T

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Su
cc

es
s P

ro
ba

bi
lit
y

Figure 7: Success probability during the first 100 steps on the 5D grid with L = 10, m = 2, and
the value of l proposed in this work, which is l = 2dm

N .

as criterion finding a step whose success probability is smaller than the immediately previous
one. We still considered the value of l proposed in previous works (l = 4m

N), although it is not

optimal for d-dimensional grids, as well as the optimal value of l found in this work (l = 2dm
N)

to assess that those premature stops are not related with the choice of the self-loop weight. As
can be seen, regardless of the value of l, each case stopped at the same premature step and,
consequently, with a highly unsatisfactory success probability.

To evaluate whether or not the system can evolve further, even though the stopping condition
is satisfied too early, we stored the success probabilities during 100 steps of the LQW algorithm
with l = 2dm

N for the first case presented in Table 7, which is the 5D grid with L = 10 and
m = 2. Figure 7 shows such a system evolution. Qualitatively, the success probability improves
continuously as more steps are performed, but there is a kind of fluctuation in the process.
However, this fluctuation has a meaning.

Ambainis et al. [14] mathematically proved that two steps of a particular quantum walk search
algorithm give precisely one step of Grover’s algorithm. It turns out, in every two steps, the
first is an intermediary step to the actual amplitude amplification generated by the second step
of the quantum walk. That quantum walk occurred on a complete graph with a non-weighted
self-loop for each vertex.

The result we showed in Figure 7 is supposed to be an experimental demonstration of that

18

two-to-one relation between quantum walks and Grover’s algorithm steps. Interestingly, we used
a quantum walk with weighted self-loops on grids with higher than two dimensions and not a
quantum walk with non-weighted self-loops on a complete graph as used in [14]. Nevertheless,
there are similarities because both quantum walk approaches apply a Grover diffusion coin and
the flip-flop shift operator Sff subsequently.

The practical implication in terms of the stopping condition is that the success probabilities of
adjacent steps must not be compared anymore. As shown explicitly in Figure 7, considering two
adjacent steps, one of them is an intermediary step subject to fluctuations. Instead of comparing
with the immediately previous step, the solution is to compare with the penultimate step.

In this way, the simulation stops in the step whose success probability is smaller than the
one of the penultimate step, and the success probability of that penultimate step is reported as
the maximum found. This is enough to conceive a more robust stopping condition capable of
escaping the premature stops reported in Table 7. To obtain those results reported in Table 5,
the stopping condition needs this slight modification, especially for these exceptional cases.

6 Final Remarks

This research addressed the LQW search algorithm and its capabilities from an experimental
point of view. We aimed to understand properties and existing limitations more clearly, in
addition to contributing to a better quantum-walk-based solver of search problems.

In this way, first, we demonstrated that different stopping conditions used in previous works
are not interchangeable. Calculating the absolute value of the inner product 〈ψ(t)|ψ(0)〉 implies
prematurely stops. Instead, the real value must be used. After choosing the stopping condition
correctly, we demonstrated that the final success probability is inversely proportional to the
density of solutions and directly proportional to the relative distance between solutions. However,
those relations are guaranteed only for high values of the input parameters. We showed disturbed
behaviors in a transition between small to high values of the input parameters from different
perspectives.

Consolidating the work, we generalized the LQW algorithm to search for multiple solutions on
grids of arbitrary dimensions, not only on the restricted 2D case. However, a new adjustment for
the self-loop weight is necessary to obtain successful searches. The experiments we made allow
concluding that l = 2dm

N is the generalized and optimal value of l for d-dimensional grids with
multiple solutions. The fits proposed in previous works are only a specific case where d equals 2.
The investigations on d-dimensional grids also clarified a two-to-one relation between the steps
of the LQW and the ones of Grover’s algorithm. An actual amplitude amplification occurs at
every two steps, where the first is an intermediary step subject to numerical fluctuations. A
fluctuation-tolerant stopping condition is obtained by comparing the success probabilities of the
current step and the penultimate step, not between subsequent steps.

Future works should mathematically define upper and lower bounds considering the impacts
of multiple solutions stated here. Those impacts of solution densities and relative distances should
be studied for solutions randomly sampled from some probability distributions. Another possible
direction is to investigate the symmetry breaking [46] that nonhomogeneous self-loop weights can
cause on grids of arbitrary dimensions with multiple solutions. Inspired by the use of multiple
quantum search agents to find optimal solutions for multiobjective optimization problems [47],
one more future direction could be to combine the evolution of multiple lackadaisical quantum
walkers in the grid. Mathematically or numerically estimated, the number of steps T to the
maximum amplitude amplification should be defined a priori since it establishes the step where
the measurement should occur when executed in quantum devices.

19

Then, theoretically, the LQW algorithm will be available to execute in quantum devices, en-
suring high success probabilities on d-dimensional grids with multiple solutions. In practice, the
LQW implementation will still need to deal with limitations in the existing quantum hardware.
Inspired in [48], future works should implement the LQW algorithm on the available quantum
computers. Finally, the LQW algorithm should be applied to solve search problems, like the
optimization of artificial neural networks, where quantum meta-heuristics of search can be used
to tune learning rates [49]. Moreover, the successful application of the LQW algorithm to trans-
fer quantum states on complete bipartite graphs [50] encourages its application for quantum
communication on grids.

Acknowledgments

This work was financially supported by the Fundação de Amparo à Ciência e Tecnologia do
Estado de Pernambuco (FACEPE), the Conselho Nacional de Desenvolvimento Cient́ıfico e Tec-
nológico (CNPq), and the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil
(CAPES) - Finance Code 001.

References

[1] J. Preskill, “Quantum computing and the entanglement frontier,” arXiv preprint
arXiv:1203.5813, 2012.

[2] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th
Anniversary Edition. Cambridge: Cambridge University Press, 2010.

[3] Z. Qu, Z. Zhang, and M. Zheng, “A quantum blockchain-enabled framework for secure pri-
vate electronic medical records in internet of medical things,” Information Sciences, vol. 612,
pp. 942–958, 2022.

[4] W. Liu and J. Zhu, “A multistage decision-making method with quantum-guided expert
state transition based on normal cloud models,” Information Sciences, vol. 615, pp. 700–
730, 2022.

[5] H. Situ, Z. He, Y. Wang, L. Li, and S. Zheng, “Quantum generative adversarial network for
generating discrete distribution,” Information Sciences, vol. 538, pp. 193–208, 2020.

[6] Y. Ruan, Z. Yuan, X. Xue, and Z. Liu, “Quantum approximate optimization for combina-
torial problems with constraints,” Information Sciences, vol. 619, pp. 98–125, 2023.

[7] G. Acampora and A. Vitiello, “Implementing evolutionary optimization on actual quantum
processors,” Information Sciences, vol. 575, pp. 542–562, 2021.

[8] W. Fang, J. Sun, H. Chen, and X. Wu, “A decentralized quantum-inspired particle swarm
optimization algorithm with cellular structured population,” Information Sciences, vol. 330,
pp. 19–48, 2016.

[9] G. Li, W. Wang, W. Zhang, W. You, F. Wu, and H. Tu, “Handling multimodal multi-
objective problems through self-organizing quantum-inspired particle swarm optimization,”
Information Sciences, vol. 577, pp. 510–540, 2021.

[10] L. K. Grover, “Quantum mechanics helps in searching for a needle in a haystack,” Physical
review letters, vol. 79, no. 2, p. 325, 1997.

20

[11] P. Benioff, “Space searches with a quantum robot,” in Quantum Computation and Infor-
mation (Washington, DC, 2000) (S. J. Lomonaco Jr. and H. E. Brandt, eds.), vol. 305
of Contemporary Mathematics, pp. 1–12, Providence, RI, USA: American Mathematical
Society, 2002.

[12] S. Aaronson and A. Ambainis, “Quantum search of spatial regions,” in Proceedings of the
44th Annual IEEE Symposium on Foundations of Computer Science (FOCS’03), pp. 200–
209, IEEE, 2003.

[13] A. M. Childs and J. Goldstone, “Spatial search by quantum walk,” Physical Review A,
vol. 70, no. 2, p. 022314, 2004.

[14] A. Ambainis, J. Kempe, and A. Rivosh, “Coins make quantum walks faster,” in Proceedings
of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, (USA),
pp. 1099–1108, Society for Industrial and Applied Mathematics, 2005.

[15] A. M. Childs and J. Goldstone, “Spatial search and the dirac equation,” Physical Review
A, vol. 70, no. 4, p. 042312, 2004.

[16] D. A. Meyer and T. G. Wong, “Connectivity is a poor indicator of fast quantum search,”
Physical review letters, vol. 114, no. 11, p. 110503, 2015.

[17] N. Shenvi, J. Kempe, and K. B. Whaley, “Quantum random-walk search algorithm,” Phys-
ical Review A, vol. 67, no. 5, p. 052307, 2003.

[18] T. G. Wong, “Grover search with lackadaisical quantum walks,” Journal of Physics A:
Mathematical and Theoretical, vol. 48, no. 43, p. 435304, 2015.

[19] H. Tanaka, M. Sabri, and R. Portugal, “Spatial search on johnson graphs by continuous-time
quantum walk,” Quantum Information Processing, vol. 21, no. 74, pp. 1–13, 2022.

[20] H. Tanaka, M. Sabri, and R. Portugal, “Spatial search on johnson graphs by discrete-time
quantum walk,” Journal of Physics A: Mathematical and Theoretical, vol. 55, no. 255304,
pp. 1–16, 2022.

[21] D. Qu, S. Marsh, K. Wang, L. Xiao, J. Wang, and P. Xue, “Deterministic search on star
graphs via quantum walks,” Physical Review Letters, vol. 128, no. 050501, pp. 1–6, 2022.

[22] D. Qu, L. Xiao, K. Wang, X. Zhan, and P. Xue, “Experimental investigation of equivalent
laplacian and adjacency quantum walks on irregular graphs,” Physical Review A, vol. 105,
no. 062448, pp. 1–7, 2022.

[23] T. G. Wong, “Faster search by lackadaisical quantum walk,” Quantum Information Pro-
cessing, vol. 17, no. 3, p. 68, 2018.

[24] N. Inui, N. Konno, and E. Segawa, “One-dimensional three-state quantum walk,” Physical
Review E, vol. 72, no. 056112, pp. 1–7, 2005.

[25] P. R. N. Falcão, A. R. C. Buarque, W. S. Dias, G. M. A. Almeida, and M. L. Lyra, “Uni-
versal dynamical scaling laws in three-state quantum walks,” Physical Review E, vol. 104,
no. 054106, pp. 1–6, 2021.

[26] L. T. Tude and M. C. de Oliveira, “Temperature and entanglement of the three-state quan-
tum walk,” Quantum Science and Technology, vol. 7, no. 035009, pp. 1–12, 2022.

21

[27] L. T. Tude and M. C. de Oliveira, “Decoherence in the three-state quantum walk,” Physica
A: Statistical Mechanics and its Applications, vol. 605, no. 128012, pp. 1–11, 2022.

[28] M. L. Rhodes and T. G. Wong, “Search on vertex-transitive graphs by lackadaisical quantum
walk,” Quantum Information Processing, vol. 19, no. 9, p. 334, 2020.

[29] P. Høyer and Z. Yu, “Analysis of lackadaisical quantum walks,” arXiv preprint
arXiv:2002.11234, 2020.

[30] N. Nahimovs, “Lackadaisical quantum walks with multiple marked vertices,” in SOFSEM
2019: Theory and Practice of Computer Science (B. Catania, R. Královič, J. Nawrocki, and
G. Pighizzini, eds.), vol. 11376 of Lecture Notes in Computer Science, pp. 368–378, Springer,
2019.

[31] P. R. Giri and V. Korepin, “Lackadaisical quantum walk for spatial search,” Modern Physics
Letters A, vol. 35, no. 08, p. 2050043, 2020.

[32] A. Saha, R. Majumdar, D. Saha, A. Chakrabarti, and S. Sur-Kolay, “Faster search of clus-
tered marked states with lackadaisical quantum walks,” Quantum Information Processing,
vol. 21, no. 275, pp. 1–13, 2022.

[33] J. H. A. de Carvalho, L. S. de Souza, F. M. de Paula Neto, and T. A. E. Ferreira, “Impacts
of multiple solutions on the lackadaisical quantum walk search algorithm,” in Intelligent
Systems (R. Cerri and R. C. Prati, eds.), vol. 12319 of Lecture Notes in Computer Science,
pp. 122–135, Springer, 2020.

[34] N. Nahimovs and R. A. M. Santos, “Lackadaisical quantum walks on 2d grids with multiple
marked vertices,” Journal of Physics A: Mathematical and Theoretical, vol. 54, no. 415301,
pp. 1–12, 2021.

[35] L. S. de Souza, J. H. A. de Carvalho, and T. A. E. Ferreira, “Quantum walk to train
a classical artificial neural network,” in 8th Brazilian Conference on Intelligent Systems
(BRACIS 2019), pp. 836–841, IEEE, 2019.

[36] L. S. de Souza, J. H. A. de Carvalho, and T. A. E. Ferreira, “Classical artificial neural
network training using quantum walks as a search procedure,” IEEE Transactions on Com-
puters, vol. 71, no. 2, pp. 378–389, 2022.

[37] X. Zhan, H. Qin, Z.-h. Bian, J. Li, and P. Xue, “Perfect state transfer and efficient quantum
routing: A discrete-time quantum-walk approach,” Physical Review A, vol. 90, no. 012331,
pp. 1–5, 2014.

[38] L. S. de Souza, J. H. A. de Carvalho, and T. A. E. Ferreira, “Lackadaisical quantum walk
in the hypercube to search for multiple marked vertices,” in Intelligent Systems (A. Britto
and K. V. Delgado, eds.), vol. 13073 of Lecture Notes in Computer Science, pp. 249–263,
Springer, 2021.

[39] N. S. Yanofsky and M. A. Mannucci, Quantum Computing for Computer Scientists. Cam-
bridge: Cambridge University Press, 2008.

[40] R. Portugal, Quantum walks and search algorithms. New York, NY, USA: Springer, 2013.

[41] H. Zhang, H. Zhao, Q. Liu, T. Xu, E. Chen, and X. Huang, “Finding potential lenders in
p2p lending: A hybrid random walk approach,” Information Sciences, vol. 432, pp. 376–391,
2018.

22

[42] T. G. Wong, “Unstructured search by random and quantum walk,” arXiv preprint
arXiv:2011.14533, 2020.

[43] G. Brassard, P. Høyer, M. Mosca, and A. Tapp, “Quantum amplitude amplification and
estimation,” in Quantum Computation and Information (Washington, DC, 2000) (S. J.
Lomonaco Jr. and H. E. Brandt, eds.), vol. 305 of Contemporary Mathematics, pp. 53–74,
Providence, RI, USA: American Mathematical Society, 2002.

[44] T. G. Wong, “Coined quantum walks on weighted graphs,” Journal of Physics A: Mathe-
matical and Theoretical, vol. 50, no. 47, p. 475301, 2017.

[45] R. Portugal and T. D. Fernandes, “Quantum search on the two-dimensional lattice using
the staggered model with hamiltonians,” Physical Review A, vol. 95, no. 4, p. 042341, 2017.

[46] J. Rapoza and T. G. Wong, “Search by lackadaisical quantum walk with symmetry break-
ing,” Physical Review A, vol. 104, no. 062211, pp. 1–15, 2021.

[47] P. Singh, “Fqtsfm: A fuzzy-quantum time series forecasting model,” Information Sciences,
vol. 566, pp. 57–79, 2021.

[48] F. Acasiete, F. P. Agostini, J. K. Moqadam, and R. Portugal, “Implementation of quantum
walks on ibm quantum computers,” Quantum Information Processing, vol. 19, no. 12, pp. 1–
20, 2020.

[49] G. Liu and W. Ma, “A quantum artificial neural network for stock closing price prediction,”
Information Sciences, vol. 598, pp. 75–85, 2022.

[50] R. A. M. Santos, “Quantum state transfer on the complete bipartite graph,” Journal of
Physics A: Mathematical and Theoretical, vol. 55, no. 125301, pp. 1–17, 2022.

23

	Folha de rosto
	Agradecimentos
	Abstract
	Resumo
	1 Introduction
	2 Classical Artificial Neural Network Training Using Quantum Walks as a Search Procedure
	3 Lackadaisical Quantum Walk in the Hypercube to Search for Multiple Marked Vertices
	4 Multi-self-loop Lackadaisical Quantum Walk with Partial Phase Inversion
	5 Search for Multiple Adjacent Marked Vertices on the Hypercube by Quantum Walk with Partial Phase Inversion
	6 General Conclusions
	References
	ANNEXES

