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Abstract

In order to analyze interventions in repairable systems, the literature contains several

methodologies aiming to model the behavior of times between interventions. Such inter-

ventions can be modeled by Point Stochastic Processes in order to analyze the probabilistic

behavior of times between events. Specifically, the Generalized Renewal Processes allow

the study of times between interventions by measuring the quality of each intervention

and the response of the system to these interventions — this is done by using the con-

cept of virtual age. In such concept it is possible to apply two kinds of Kijima models

(Type I and II). Therefore, this work presents a model capable of study the quality of

interventions using up of a mix between the two Kijima models where it is possible to

capture the performance on each of these interventions proportionally. Specifically, a new

approach to virtual age of Kijima models is presented as well as mathematical properties

of the Generalized Renewal Process using the Weibull distribution probability. Finally,

the applicability of the model is checked in real data from some problems found in the

literature.

Key-words: Repairable Systems. Generalized Renewal Processes. Kijima models.
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Resumo

Para analisar intervenções em sistemas reparáveis, a literatura apresenta diversas metodo-

logias visando modelar o comportamento de tempos entre intervenções. Tais intervenções

podem ser modeladas por Processos Estocásticos Pontuais visando analisar o comporta-

mento probabilístico dos tempos entre eventos. Especificamente, os Processos de Renova-

ção Generalizados permitem o estudo de tempos entre intervenções medindo a qualidade

de impacto de cada intervenção e a resposta do sistema a tais intervenções — isto é feito

utilizando o conceito de idade virtual. Em tal conceito é possível se aplicar dois tipos de

modelos Kijima (tipo I e II).Sendo assim, esse trabalho apresenta um modelo capaz de

estudar a qualidade de intervenções utilizando-se de uma mistura entre os dois modelos

Kijima onde é possível capturar a atuação de cada um desses sobre as intervenções pro-

porcionalmente. Especificamente, uma nova abordagem sobre a idade virtual dos modelos

Kijima é apresentada, bem como propriedades matemáticas dos Processos de Renovação

Generalizados utilizando a distribuição de probabilidade Weibull. Por fim, a aplicabilidade

do modelo é verificada em dados reais de alguns problemas presentes na literatura.

Palavras-chaves: Sistemas Reparáveis. Processos de Renovação Generalizados. Modelos

Kijima.
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1 Introduction

One of the main objectives of humanity is try to extend the life time of every thing

- alive or not. Here, these things are entitled of systems and a brief concept is to define

a system as an object or a set of objects that performs a specific (set of) function(s).

These systems can be found in several fields of knowledge - organic systems are present

in Biology, Agrarian, Human Health Sciences and so on; Inorganic systems are present

in Computer, Engineering, Mechanics and so forth. However, we can not limit systems

only in these definitions - actually, organic systems can be though in a broader view as

well as inorganic systems, but we use this concept to focus in problems that we take here.

Thus, a system can be generally studied and then its characteristics can be modelled

by different mathematical tools. Furthermore, these systems can be functional up to the

first occurrence of an undesirable event (non-repairable systems), or they can be restored

to keep functioning with certain capacity (repairable systems). This work is related to

systems that can be restored by some kind of intervention - the repairable ones. This

discussion can be found and is based in Rigdon & Basu (2000).

Interventions have different impacts depending on their quality and the response

of the system. Dealing with that, Brown & Proschan (1983) propose a model, called

as Brown-Proschan (BP) model, that tries to capture the effect of an intervention on

a repairable system through a dichotomous variable, say D, where D = 0 means that

a perfect intervention has occurred, whereas D = 1 means that a minimal intervention

has been performed. To balance these situations, Brown & Proschan (1983) state that

P (D = 0) = p and P (D = 1) = 1 − p. Thus, they assign probabilities to these two

kinds of intervention. However, this modelling is capable only to treat the occurrence of a

perfect/minimal intervention with specific probabilities and does not represent other real

world situations.

Trying to expand these concepts, Kijima et al. (1988) developed a new concept,

namely virtual age, capable to analyze both types of intervention aforementioned and

three more: imperfect, better and worse intervention. To measure these situations, a reju-

venation parameter, say q, takes values traditionally between 0 and 1. Basically, Kijima

et al. (1988) present a classification where deteriorating systems can be restored to five

different states, originally called as repairs.

These situations are also analyzed by Kijima (1989) and Krivtsov (2000) through
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Stochastic Processes and Renewal Theory. Further, Ross (2006) cites that perfect inter-

ventions are treated through Renewal Processes (RP), whereas minimal ones are treated

through Non-Homogeneous Poisson Processes (NHPP). This Stochastic Process presented

by Kijima et al. (1988) is called as Generalized Renewal Processes (GRP), since it gen-

eralizes the NHPP and RP. The parameter q represents this generalization, as described

above.

Kijima et al. (1988) present two kind of models that work with this parameter

q. Kijima Type I tries to model situations where the intervention made acts only at the

last stoppage time representing an immediate intervention. Kijima Type II tries to model

situations where the intervention made acts at the whole system aiming its stoppage time

history. Further, Jacopino et al. (2004) and Jacopino et al. (2006) present studies about

applications of these models in real cases. They state that we could use Kijima Type I in

cases where single components of a system (or a system formed by a single component),

whereas Kijima Type II model is used in complex systems (with several components).

However, real situations can present stoppage times that represent an intermediate sit-

uation between these two models, and this kind of situation is not treated by the most

known GRP modelling literature - interventions made to impact more than the last one

(Kijima I) but less than the whole history (Kijima II).

Applications of Renewal Theory are commonly found in fields of engineering where

non-organic systems are analyzed and times between interventions are modelled through

probabilistic distributions. Specifically, the use of GRP can be found in works as Yañez

et al. (2002), Jain & Maheshwari (2006), Jimenez & Villalon (2006) where the data set is

modelled via Weibull distribution. This is important, since none of these or other works

present another probabilistic distribution but Weibull distribution. Furthermore, Guo et

al. (2007) state the difficulty to work with GRP, since theoretical properties are not

explored in literature.

This work brings a discussion about repairable systems and methods used to model

time between interventions on them. Specifically, it is presented an alternative for mod-

elling the quality and effect of interventions made on those systems, and also the impact of

different types of intervention on virtual age. Furthermore, this is made by using a mixed

model of Kijima approaches through GRP. Finally, using a parameter to relate times

between interventions and ther types, it is introduced an idea on how to relate the types

of interventions to predicted times. This work brings details of mathematical properties

and results presented in Ferreira et al. (2015) where this model was firstly presented in

the literature.
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1.1 General Objective

The main objective of this work is to develop a mixed model based on WGRP using

Kijima models. This model is capable of measuring the impact of each Kijima model in

times between interventions.

1.2 Specific Objectives

To achieve the main objective, some specific objectives must be met, such as:

• To make a literature review with main works concerning GRP-WGRP modelling;

• To present advantages, properties and connective points between Kijima models;

• To develop the use of these models with the Weibull distribution - the proposed

mixed model;

• To present mathematical, theoretical and pratical features of the new model;

• To apply the proposed model in real world databases.

This work is structured as follows. Chapter 2 brings a discussion about Renewal

Theory. Chapter 3 presents the whole structure of the proposed model. Chapter 4 presents

the main results obtained by the proposed model in cases from literature. Finally, Chapter

5 brings some discussions and conclusions about this work.
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2 Literature Review

This chapter brings a review about works that use GRP framework. Several authors

use this methodology to create hybrid models capable of dealing with different and specific

problems. However, all problems have similar configurations - renewable systems where it

is important to analyze their capacity of restoration.

2.1 Renewal Theory and the beginning of GRP

The need to deal with complex systems brought up the development of methodolo-

gies capable of analyzing behaviour of failures. The major part of developments appear

to be concerned with Inorganic Systems aiming the analysis of reliability, availability and

preventive maintenance policies of equipment/devices.

In this context, Crow (1975) presents a wide discussion about repairable systems

and tools to evaluate their reliability. Through these tools, Point Stochastic Processes

have the function to analyze time between interventions but neglecting the duration of

intervention times. In other words, cases where the intervention time is considerably small

compared with operational time of the system are analyzed by means of these processes.

Among the already cited processes, some of them has a wide applicability, as can

be seen in Ross (2006). Cases where system returns as a new one, we have the Renewal

Processes (RP). In cases where systems receive a minimal intervention, we have the Non-

Homogeneous Poisson Process (NHPP).

However, these cases do not represent the reality of a number of complex systems

- they suffer some kind of intervention and turn back into operation "better than old but

worse than new", the so-called imperfect intervention. Some authors developed method-

ologies that tried to incorporate this kind of intervention to repairable systems. Brown

& Proschan (1983) present the BP model which tries to incorporate the imperfect inter-

vention using a Bernoulli variable D - the perfect intervention occurs with probability

P (D = 0) = p whereas the minimal one occurs with P (D = 1) = (1 − p). Clearly, this

modelling does not include the imperfect case since the variable is dichotomous. After

this, Kijima & Sumita (1986) present a methodology capable of modelling imperfect in-

terventions and generalize the other situations aforementioned. This modelling is known

as GRP and is capable of modelling situations of RP, NHPP and imperfect interventions.
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This is possible due to the concept presented in Kijima et al. (1988) known as the virtual

age. This concept acts on the real age of the system and considers the impact of an inter-

vention made after a stoppage event. Thus, the virtual age is a modification of the real

age depending on the intervention made and the response of the system to it.

The virtual age is measured through a rejuvenation parameter, q, which captures

the impact of interventions in operational time. Furthermore, the way that this parameter

can be used in different ways depending on the Kijima model used, developed in Kijima

et al. (1988).

2.1.1 The rejuvenation parameter and Kijima models

Thinking of a more general function, Baxter et al. (1982) discuss the development

of a renewal function trying to generalize other processes used in this scope. Thus, seminal

papers came with Kijima & Sumita (1986) and Kijima et al. (1988) where a general

process is presented dealing with several situations through a new parameter, the so-

called rejuvenation parameter q. It analyzes the virtual age of systems - an age different

from the real one due to effects of intervetions made on the system. Traditionally, its range

is between [0, 1], though values less than zero or greater than one can be also considered.

As follows five situations for a deteriorating system after interventions are pre-

sented for Kijima models:

• q < 0: The virtual age is less than the actual age of the system. In this situation

the interventions bring the system to a “better than starting” condition (KIJIMA

et al., 1988).

• q = 0: The virtual age is reset and the system is restarted by the interventions. In

other terms, the interventions lead the system to an “as good as starting” condition,

reflecting a RP (MODARRES et al., 1999). The AGAN status.

• q = 1: The virtual age equal the actual age, i.e. the restoration is minimal and lead

the system to an “as bad as before” intervention condition, characterizing a (NHPP)

(MODARRES et al., 1999). The ABAO status.

• 0 < q < 1: The interventions are considered imperfect, leading the system to an

intermediate condition of restoration.

• q > 1: The interventions bring the system to a “worst than before intervention”

condition. Traditionally, this situation may reflect the need of investments in the

maintenance crew, once they are eventually deteriorating the system.
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Figure 1: Three situations of interventions according with the value of q.

Figure 2: Two extreme situations with values of q.

We can illustrate three intermediate situations as in Figure 1 where one can see

the relationship between the virtual and real ages. The real age can not be interrupted,

but the virtual age suffers some kind of modification according with the value of q - the

effect of the interventions. Also, the other two situations are illustrated in Figure 2.
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Once explained that the rejuvenation parameter acts on the virtual age, it is

important to see how this virtual age is structured mathematically. According with Kijima

et al. (1988), there are two ways to capture the impact of inteventions made. They state

that the intervention can act only at the last stoppage cause - it will restore the damage

created by this last cause only. This situation is known as Kijima type I (KI) model.

In other way, the intervention made can have the intention to restore past problems

occurred during the life time of the system. Thus, this corresponds to a deeper intervention

trying to affect the whole history of the system’s stoppages. This situation is known as

Kijima type II (KII) model.

We can see the mathematical structure of the virtual age depending on Kijima

type model as follows:

Vi = v(Xi | q, Vi−1) = Vi−1 + qXi (2.1)

Vi = v(Xi | q, Vi−1) = q(Vi−1 + Xi) (2.2)

Where, Eq. (2.1) and Eq. (2.2) refer to KI and KII, respectively. It is easy to

notice that the former brings q acting only on the last stoppage time (Xi), whereas the

latter one presents the influence of q also in the system’s history. With this in mind, it is

important to distinguish in each problem studied and what is the impact of interventions

in the repairable system.

The knowledge about this concept allows several authors to develop studies with it.

These studies include properties, mathematical characteristics, applications with specific

probabilistic distributions and so forth. Among them, Krivtsov (2000) presents a reviewed

analysis of Generalized Renewal Processes and a discussion about the use of virtual age

with the Cumulative Distribution Function (CDF). Such concepts are explored in the next

section.

2.1.2 GRP functions

Let ti−1 be the observed cumulative time on which the (i − 1)th intervention has

in fact occurred, with respective virtual age vi−1, and let x(≥ 0) be the incremental time

until the ith intervention. Then, Kijima et al. (1988) highlight that the system has a

cumulative time up to the ith intervention, say Ti, which is distributed according to the
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following GRP cumulative distribution:

P (Ti ≤ x + vi−1|Ti > vi−1) = P (T1 ≤ x + vi−1|T1 > vi−1)

=
FT1

(x + vi−1) − FT1
(vi−1)

1 − FT1
(vi−1)

(2.3)

From the first equality in Equation (2.3), one can see that GRP are based on

the supposition that the couple between the time until first intervention and the virtual

age is sufficient to determine the family of distributions that model the times between

interventions. Thus, it is supposed that the times between interventions (X1, X2, · · · ) are

identically distributed and that their eventual dependency is incorporated in the model

via the virtual age function. Furthermore, the uncertainty over Ti is fully modeled once

the virtual age in the (i − 1)th intervention as well as the distribution of T1 are known.

As the time until first intervention is sometimes questionable, mainly in the cases where

the involved information system has modest experience in data set maintenance or even

when the system start up (T0) is uncertain, caution must be taken in this way. A case

study inspired in a data set from literature will allow to illustrate such a situation.

From Equation (2.3) and assuming its respective probability density function

(PDF), fTi
(x + vi−1|vi−1), one obtains the GRP hazard function:

hTi
(x + vi−1|vi−1) =

fT1
(x + vi−1|vi−1)

1 − FT1
(x + vi−1|vi−1)

(2.4)

In a general context, the hazard function can represent the instantaneous rate of

interventions on the system (e.g. corrective or preventive actions) as time evolves. Thus,

the higher hTi
the lesser the time between consecutive interventions x is, reflecting system

deterioration. The reasoning for systems improvement follows the same fashion. It must

be highlighted that the resulting CDF and hazard functions for Ti in Equations (2.3) and

(2.4) encapsulate the previous performance of the system (in terms of its technology and

maintenance crew) by means of the virtual age vi−1.

Once presented this structure to probabilistic distributions in GRP, it can be seen

that its use is explored in Yañez et al. (2002) applying the Weibull distribution which we

will call here as Weibull-Generalized Renewal Processes (WGRP). They present specific

analysis considering different failure processes (time-terminated or failure-terminated),

estimation processes and CDF/PDF structure.

These structures are explored and presented as follows as an overview.
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2.1.3 The WGRP modeling

The most used GRP model is the WGRP, applied in some works as Yañez et al.

(2002), Jain & Maheshwari (2006), and so forth. In WGRP, each time between interven-

tions, Xi, follows a two parameters standarized Weibull distribution as shwon in Weibull

(1951) conditioned on the corresponding virtual age, vi−1, with shape and scale parameters

β and α, in this order. Such a model is studied as follows. Actually, the interpretations

presented previously for q are mostly based on WGRP. A similar representation of the

cumulative distribution function (CDF) of WGRP seen in Yañez et al. (2002) is presented

as follows:

FTi
(x + vi−1|vi−1, α, β) =

1 − exp
[

−
(

x+vi−1

α

)β
]

− 1 + exp
[

−
(

vi−1

α

)β
]

1 − 1 + exp
[

−
(

vi−1

α

)β
]

=
− exp

[

−
(

x+vi−1

α

)β
]

+ exp
[

−
(

vi−1

α

)β
]

exp
[

−
(

vi−1

α

)β
]

= 1 − exp

[

(

vi−1

α

)β

−
(

x + vi−1

α

)β
]

(2.5)

This distribution was structured following the conception presented in Krivtsov
(2000). From the WGRP CDF, one can obtain the PDF as follows:

fTi
(x + vi−1|vi−1, α, β) =

β

α

(

x + vi−1

α

)β−1

exp

[

(

vi−1

α

)β

−

(

x + vi−1

α

)β
]

(2.6)

This PDF is obtained through the derivative of WGRP CDF with respect to x. In turn,

in the light of FTi
(x + vi−1|vi−1, α, β) and fTi

(x + vi−1|vi−1, α, β), it is straightforward to

obtain the respective hazard function, following the Eq. (2.4):

hTi
(x + vi−1|vi−1, α, β) =

fT1
(x + vi−1|vi−1, α, β)

1 − FT1
(x + vi−1|vi−1, α, β)

=
β

α

(

x + vi−1

α

)β−1

(2.7)

Generally, works using these distributions are used to study life time situations

involving deterioration (see Yañez et al. (2002), Veber et al. (2008), and Damaso & Gar-

cia (2009)). Thus, both theoretical and practical results are derived from them, such as

obtaining Maximum Likelihood Estimation (MLE) process, and generating sampling time

through the inverse method, based on method described in Ross (2006).

Using the concept of a likelihood function, the MLE process is based on the joint

PDF and derivatives, given as follows:

f(x | α, β, q) =
βn

αnβ

[

n
∏

i=1

(xi + vi−1)β−1

]

e
1

αβ (
∑n

i=1
v

β
i−1

−

∑n

i=1
(xi+vi−1)β) (2.8)
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It is worthwhile to mention that vi encapsulates the maintenance history of the system un-
til ith intervention. Let ℓ = ln f denote the log-likelihood function underlying the WGRP.
Then:

ℓ(α, β, q|x1, . . . , xn) = n(ln β −β ln α)+(β −1)
n
∑

i=1

ln(xi +vi−1)+
1

αβ

[

n
∑

i=1

v
β
i−1

−
n
∑

i=1

(xi + vi−1)β

]

(2.9)

From ℓ, one can obtain the MLE for α by computing the α for which ∂ℓ
∂α

= 0:

α̂ =





∑n
i=1(xi + v̂i−1)β̂ −

∑n
i=1 v̂

β̂
i−1

n





1

β̂

. (2.10)

Equations (2.8), (2.9), and (2.10) show the MLE process to infer about α, β, and q

and the resulting equations. However, the MLE of β and q is mathematically intricate.

Equations (2.11) and (2.12) refer to the derivatives of Equation (2.9) to obtain the ML

estimators for β and q. Only the derivatives are presented here once it is not possible

to analytically isolate β and q as done for α. Thus, for practical purposes, α̂, β̂, and q̂

can be approximated via probabilistic optimization algorithms (e.g. simulated annealing,

particle swarm, and genetic algorithms), where α̂ is a deterministic function of β̂ and q̂

via Equation (2.10).

∂ℓ

∂β
=

n

β̂
− n ln α̂ +

n
∑

i=1

ln(xi + v̂i−1)

− α̂−β̂ ln α̂

[

n
∑

i=1

v̂
β̂
i−1 −

n
∑

i=1

(xi + v̂i−1)β̂

]

(2.11)

+
1

α̂β̂

[

n
∑

i=1

v̂
β̂
i−1 ln

n
∑

i=1

v̂i−1 −
n
∑

i=1

(xi + v̂i−1)β̂ ln
n
∑

i=1

(xi + v̂i−1)

]

= 0

∂ℓ

∂q
=(β̂ − 1)

n
∑

i=1

v̂′

i−1

xi + v̂i−1
+

1

α̂β̂

[

n
∑

i=1

β̂v̂
β̂−1
i−1 v̂′

i−1 −
n
∑

i=1

β̂(xi + v̂i−1)β̂−1v̂′

i−1

]

= 0 (2.12)

Despite the parameter q is not explicitly showed in the derivatives, v̂ encapsulates

it by means of KI or KII.

Once presented the ML process and probabilistic functions, it is important to know

how to generate random samples from this process to know its behaviour. This process is

presented in the following inspection.

2.1.4 WGRP random sampling process

Sampling random WGRP series is made by means of the inverse transform method

Ross (2006). Specifically, this method is based on the equality u = 1 − R(x + v | v), where
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R(x+v | v) = 1−F (x+v | v) denotes the WGRP reliability/survival function. In the inverse

transform method one has that u is an instance of the random variable U ∼ Uniform(0, 1).

So, by isolating x (resorting to Eq. (2.5)) one has the WGRP instance

x = α

[

(

v

α

)β

− ln(u)

]
1

β

− v. (2.13)

Therefore, it is allowed through Eq. (2.13) to generate a sequence of n times

between interventions, (x1, · · · , xi, · · · , xn), according to instances of α, β, and q. Fur-

thermore, one can notice an important behaviour of the system according to the values

of q and β in WGRP. Theoretically, from Eq. (2.7), one can see that depending on the

value of β, the WGRP hazard function presents an increasing (for β > 1) or decreasing

(β < 1) behaviour, since the remaining arguments of hTi
(·) are non-negative.

This work proposes an analysis of Renewal Theory through the use of WGRP

creating a mixed virtual age capable of measuring proportionally both type of Kijima

models through a couple of parameters.



12

3 The Mixed Kijima model

In this Chapter, it is presented the proposed model, its development, properties and

practical achievements. Since the virtual age is a central concept inside GRP framework,

it is presented here a new approach to this concept involving a mixing of Kijima models

as follows.

3.1 A New Concept of Virtual Age

Some notations are considered, focused on the problem of fitting WGRP models

to time series performance data sets involving the occurrence of events of interest in a

given system. Specifically, the events of interest will be considered as intended or unin-

tended interventions on the condition of the system, and the focus will be on modeling

the response of the system to these interventions in terms of the times between next inter-

ventions. Each intervention might be demanded by a single event from a set of possible

(and eventually competing) ones (e.g. preventive and corrective actions) in such a way

that the considered GRP model will incorporate the nature of such interventions in the

model.

Without loss of generality, the word time will represent any unit measure over

which the interventions are observed (e.g. meters, seconds, kilograms, cubic meters, and

so on). Besides, the duration of each intervention is considered negligible, i.e. just point

process are taken into account (ROSS, 1997). Finally, it is also considered that systematic

increasing (decreasing) times between interventions characterize improvement (deteriora-

tion) of the system.

Definition 3.1.1. Let Ti be the time when the ith intervention occurs (the actual cumu-

lative time until ith intervention) and let Xi be the time between the (i − 1)th and the ith

interventions (X0 is a non-negative constant).

From both Definition 3.1.1 and point processes foundations, we can see that

Ti =
∑i

j=1 Xj is the “real” age of the system when the ith intervention occurs. A di-

rect consequence is that T0 = X0. It has been usual to assume X0 = 0 in practice. It must

also be highlighted that Xi (and therefore Ti) can be characterized as random variables

and thus subject to statistical modeling via GRP, once they can depend on the stochastic
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nature of the system condition. In turn, it is also reasonable to interpret the random

vectors T = (T1, T2, ..., Tn) and X = (X1, X2, ..., Xn) as stochastic processes. With these

definitions in mind, we can define the new virtual age as follows.

Definition 3.1.2. Let Vi be the virtual age of the system reflecting its restoration af-

ter i interventions. Thus Vi is a function of times between interventions {Xj}
i
j=1, of

the respective intervention types {Yj}
i
j=1, and of an appending parameter, say q, Vi =

v((X1, Y1), (X2, Y2), ..., (Xi, Yi) | q). Thus, this concept is expanded as a mixing of Kijima

virtual age models as follows:

Vi = v(Xi, Yi | q, Vi−1) = θYi
(Vi−1 + qXi) + (1 − θYi

)q(Vi−1 + Xi), (3.1)

where θYi
∈ [0, 1] and q ∈ R.

Furthermore, Equation (3.1) is a linear combination in such a way that θYi
=

1 (θYi
= 0) lead to the Kijima type I (Kijima type II) model. Therefore, considering

k alternatives (intervention types) for Yj one has k new parameters to GRP, say θ =

(θ1, · · · , θk) such that θYi
∈ θ, measuring the degrade between Kijima I and II models

imposed to the system by each intervention type. In Equation (3.1), for θYi
= 1, the

impact of the ith intervention only operates on Xi, by qXi. On the other hand, when

θYi
= 0 the ith intervention reflects on Xi and on the previous updated times between

interventions, composing a geometric propagation of the quality of the ith restoration on

the overall system performance history. Traditionally, θYi
= 1 may characterize unintended

interventions where the causes of the system stoppage are investigated in order to restore

its continuation condition, only. On the other hand, θYi
= 0 might characterize intended

interventions where eventual previous negligence of the maintenance crew on parts of the

system can be inspected, identified, and then suppressed. However, depending on Yj (e.g.

whether the jth intervention is planned or unplanned), the virtual age might be more or

less affected by the jth intervention.

From Definition 3.1.2, proposed here, the GRP virtual age function can fit the

performance data set of the system in terms of both the times between interventions

X = (X1, X2, ..., Xn) and the respective nature of such interventions Y=(Y1, ..., Yn) (e.g.

whether planned or unplanned), besides the already known parameter q. To date, in

the GRP literature, the vector Y is not taken into account. Based on the realization of

stochastic processes, say {xj, yj}
i−1
j=1, we have

vi−1 = v((x1, y1), (x2, y2), ..., (xi−1, yi−1) | q).

In summary, it is suggested here that the level of restoration imposed to the system by

each intervention might depends on the respective intervention type.
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This scenario is not seen in literature, Krivtsov (2000) works with the GRP pre-

senting a concept regarding virtual age functions considering the stochastic nature of the

system restoration, but only considering the quality of intervention which is the tradi-

tional interpretations of virtual age that solely reflect the role that the parameter q plays

on the system. This is the same kind of interpretation seen in Yañez et al. (2002), where

models Kijima Type I and II are presented and their efficiency is presented separately.

Specifically, they discuss the role of each model where Kijima Type I reacts better to

interventions made only at the last time between interventions - situations where the in-

tervention is unintended. This kind of model cannot capture with accuracy interventions

made to affect the whole system. In this case, Kijima Type II is a model that expands the

effect of repair through all history of the system - where planned interventions are made.

Here, unintended interventions are not well modeled by Type II.

Here, by means of Equation (3.1), we present a mixed version where such degrade

is possible. In this way, the lesser θYj
the greater the impact of the interventions of type

Yj on the system performance. Thus, the proposed model also allows one to compare the

quality of the existing intervention types.

Here, the probabilistic distribution used in GRP is the Weibull distribution, since

its characteristics are widely applied with life time variables. Basically, the mathematical

structure of probability functions remains the same as presented in Chapter 2, but the

virtual age is now replaced by the mixed one proposed here. Thus, the MLE and random

sampling generation are not modified.

However, an additional point is the interpretation of the WGRP parameters. The

traditional meaning of parameters involving the WGRP presented in literature does not

cover all possiblities that these parameters can assume and their impats on the system.

A detailed study is presented in the next Section.

3.2 New meaning of parameters in WGRP

Let the hazard function of a WGRP aforementioned be presented as follows.

hTi
(x + vi−1|vi−1, α, β) =

fT1
(x + vi−1|vi−1, α, β)

1 − FT1
(x + vi−1|vi−1, α, β)

=
β

α

(

x + vi−1

α

)β−1

(3.2)

From Eq. (3.2) it is possible to analyze the meaning of the parameters according

to the behaviour of the system in response to the interventions. Clearly, there are three

situations: when β > 1, β = 1, and β < 1. For β = 1, we have the particular case of
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an Exponential distribution. When β < 1, the numerator and denominator will invert

inside parenthesis and then, the greater the time (actual plus virtual ones) the lesser the

hazard; thus the greater the q, the greater the virtual age, the better the interventions.

On the other hand, if β > 1, the numerator will arise the hazard function as time turns

higher, and then the greater the q the greater the hazard. In fact, this reasoning brings a

more general interpretation for the meaning of the WGRP parameters in relation to the

WGRP literature, mostly dedicated to the cases where β > 1.
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Figure 3: WGRP samples to explain relationship between values of β > 1, β < 1 and
q > 1. The blue dashed lines represent WGRP samples. The black dashed line
in bold represent the estimated WGRP mean model and the black point ones
represent 95 percent confidence interval.

To reinforce these perspectives, Fig. 3 presents some simulations involving the

relationship between β, q, and the stoppage times. It presents four situations to compare

the behaviour of simulated times to understand how is the impact of the values of q
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in two situations of β.In fact, as previously stated, if β < 1 then the greater the q

the greater the level of system improvement imposed by the interventions, once times

between interventions enlarge. In practice, this situation occurs when we have a system

that is improving or learning with its stoppage events. This is common with software,

artificial intelligence systems, and others that can learn at each step achieved. Thus, it is

claimed that the literature traditionally interpret q for β > 1 (i.e. deteriorating systems)

only, and neglects the meaning of q in the cases where β < 1.

Thus, it is more reasonable to think of β as being the main parameter for reflecting

the system restoration pattern instead of q. In this way, the meaning of q depends on the

behaviour of β. For instance, when β = 1, q becomes useless and the times between

interventions are identically and exponentially distributed. In this situation, the system

is considered without memory since the hazard function is constant through time (it only

depends on α). Obviously, this case brings important discussions. In particular, it must

reflect the situation where the intrinsic nature of the system as well as the performance of

its maintenance crew are aligned in such a way that the system stays stable over the time.

It would be seen as some kind of perfect balance, something possible though rare. These

discussions arise the importance of a correct interpretation of the WGRP parameters,

mainly of q. In fact, α and β can be understood similarly to the case of the Weibull

distribution.

On the other hand, the mathematical challenges of WGRP has not been fully

addressed. Guo et al. (2007) present an asymptomatic claim about the complexity of

working mathematically with GRP. These authors state that the closed-form solution of

the mean time between interventions is not available. In fact, there is little or even no

work in WGRP literature that develops mathematical properties such as first moments.

This problem is handled as follows.

3.3 First and second theoretical moments of WGRP

These moments might be important to promote preventive interventions analyses.

In this way and without loss of generality the index of vi−1 is suppressed. The first moment
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is developed as follows:

E(X | α, β, v) =
∫

∞

0
x

β

α

(

x + v

α

)β−1

exp

[

(

v

α

)β

−
(

x + v

α

)β
]

dx

= exp

[

(

v

α

)β
]

∫

∞

0
x

β

α

(

x + v

α

)β−1

exp

[

−
(

x + v

α

)β
]

dx

= exp

[

(

v

α

)β
]{

∫

∞

−v
x

β

α

(

x + v

α

)β−1

exp

[

−
(

x + v

α

)β
]

dx

−
∫ 0

−v
x

β

α

(

x + v

α

)β−1

exp

[

−
(

x + v

α

)β
]

dx

}

Using some algebra and substitution, one has:

E(X | α, β, v) = exp

[

( v

α

)β
]{

αΓ

(

1 +
1

β

)

+
α

β
Γ̃

(

1

β
,
( v

α

)β
)

−
α

β
Γ̃

(

1

β
, 0

)}

(3.3)

and E(X +v | α, β, v) = E(X | α, β, v)+v. Here, the incomplete Gamma function is given

by Γ̃(a, z) =
∫

∞

a e−ttz−1dt and must be approximated via numeric calculus.

In turn, the non-central second moment is given by:

E((X + v)2 | α, β, v) =

∫

∞

0

(x + v)2f(x + v | α, β, v)dx

=

∫

∞

0

x2f(x + v | α, β, v)dx + 2v

∫

∞

0

xf(x + v | α, β, v)dx

+ v2

∫

∞

0

f(x + v | α, β, v)dx

= exp

[

( v

α

)β
]{
∫

∞

−v

x2f(x + v | α, β, v)dx −

∫

∞

−v

x2f(x + v | α, β, v)dx

}

+ 2vE(x + v | α, β, v) + v2.

Finally, one has:

E((X + v)2) = exp

[

(

v

α

)β
]{

α2Γ

(

1 +
2
β

)

+

+ v2 + 2
∫ 0

−v
x exp

[

(

x + v

α

)β
]

dx

}

+ 2v · E(X) + v2. (3.4)

These calculations conclude the first and second moments of X. Since these mo-

ments involve the exponential and the incomplete gamma functions. The presence of v in

these functions may lead to computational problems as v increases. These are important

results, since Doyen & Gaudoin (2006), Veber et al. (2008) and Moura et al. (2014) point

that there is no presentation in literature about theoretical studies to WGRP.

Next Section discusses some numerical results where random sampling process is

presented to the proposed model and an illustrative example of it.
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3.4 Sampling process to expose first moment behaviour

We have already seen how to sample random WGRP series in Section 2.1.4.

Through the use of Eq. (2.13), we can observe the behaviour of sample means and the first

moment samples. By generating such sequence of WGRP random numbers, it is possible

to notice the implications of the incomplete Gamma function.

Figure 4: WGRP samples statistics and theoretical conditional expected values in an aging
system (β > 1).

Considering an aging system where β > 1, q = 1.2, and θyi
= 1 (Fig. 4), the times

between interventions become closer gradually and the impact of the interventions is not

so worth (q = 1.2). In other words, next intervention must be made in an earlier interval

than the previous one and the intervention actions have contributed to such behaviour

(otherwise, we would have q near 0). Furthermore, since β > 1, the power term in the first

moment grows rapidly and the theoretical expected value quickly becomes intractable due

to the complex math terms (see the blue dashed line).
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4 Results

In this Chapter some results involving the adjustment of a WGRP model to three

cases of literature are presented. Specifically, these cases suggest an increasing, constant

and a decreasing hazard function. Then, analysis through Renewal Theory framework are

presented separately.

First, the RP, NHPP, Kijima I, Kijima II, and proposed model were adjusted for

each data set, via ML estimation, where the log-likelihood function for WGRP, Eq. (2.9),

was optimized according to the simulated annealing algorithm provided by the GenSA

package of the free-ware R software (R, 2009).

For the sake of comparison, the mean squared error (MSE) and log-likelihood

(LL) metrics were computed for each model. Regarding the MSE, it was based on mean

stoppage times, estimated from 200, 000 simulated samples from each model. In this con-

text, it was considered the following space of possibilities for β̂, q̂, and θ̂: (β̂, q̂, θ̂) ∈

[10−100, 10] × [−1.5, 1.5] × [0, 1]k, where k is the number of alternatives for intervention.

4.1 Offshore facility data set

The first data set is from Langseth & Lindqvist (2005) where 84 stoppage times,

regarding two intervention types (corrective (c) and preventive (p)) of a compressor system

of an offshore facility is considered. Thus, the data set records two variables: times between

maintenance actions and the respective types of maintenance. It is worthwhile to mention

that the time until first intervention (t1 = 220) was removed from the modelling study

since it was considered an outlier. Thus, X0 = t1 in this case.

Firstly, the RP, NHPP, Kijima I, Kijima II, and proposed model were adjusted to

the data set. Furthermore, the performance measures (LL and MSE) of each model were

computed (see Table 1), via MLE. It is possible to conclude that the Kijima II model (the

proposed one where θ = (0, 0)) presents the best performance in terms of both LL and

MSE.

Considering the proposed model, the maximum likelihood estimates for

α, β, q, and θ = (θc, θp) from the adopted data set (without t1) were (α̂, β̂, q̂, (θ̂c, θ̂p))=(5.87, 0.95

Thus, due to θ estimates, the proposed approach has been simplified to the Kijima II
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model.

To capture the inherent variability of the optimization process, the GenSA function

was executed 30 times. However, the behaviour of the LL function related with the space

of possibilities for parameters set was studied and it can be noticed a stabilized form of

the function — it is clear through the graphic constructed for RP, NHPP, KI and KII

models. To do so, values of LL were generated using values of β and q in their space to

construct several graphics as shown bellow in each situation of Renewal Theory models.

Figure 5: Curve of LL for RP model in Offshore database. The maximum is achieved in
a single point considering values of β in a specific space.

Figure 6: Curve of LL for NHPP model in Offshore database. The maximum is achieved
in a single point considering values of β in a specific space.
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Figure 7: Curve of LL for KI model in Offshore database. The maximum is achieved in a
single point considering values of β and q in a specific space.

Thus, descriptive measures does not indicate relevant variance in parameters set,

once there is only one maximum value in LL function as seen in Fig. 5, Fig. 6, Fig. 7 and

Fig. 8, respectively.

As β̂ < 1, it follows that the system is improving, in the sense that the greater the

time the lower the hazard rate. It might reflect a burn-in period of the system, charac-

terized by early failures attributable to defects in design, manufacturing, or construction

(MODARRES et al., 1999). In turn, (q, θc, θp) = (1.5, 0.0, 0.0) reveals that regardless

the intervention type (whether corrective or preventive), its positive impact propagates

through the entire system history with the maximum intensity, since vi = 1.5 · (vi−1 + xi)

and it was assumed q ≤ 1.5. It is scratched in Fig. 9 the observed stoppage time series

and instances of the best fitted model.

In fact, it is exhibited in Fig. 9 the observed cumulative times t=(t2, t3, ..., t85), the

respective WGRP sample points and 95% interval estimates as well as some of the series

simulated from the fitted model. In this case, precise estimates from Eq. (3.3) were unavail-

able due to computational limitations. One can see that the fitted model has enveloped
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Figure 8: Curve of LL for KII model in Offshore database. The maximum is achieved in
a single point considering values of β and q in a specific space.

Table 1: MLE parameters estimates, MSE and Log-Likelihood (LL) measures of WGRP
models for the offshore facility dataset from Langseth & Lindqvist (2005)

Model α̂ β̂ q̂ θ̂c θ̂p MSE LL

RP 14.39 0.79 * * * 49185.97 -312.27

NHPP 2.39 0.69 * * * 13991.01 -310.64

Kijima I 3.299 0.52 0.02 1 1 18542.23 -306.74

Kijima II 5.85 0.95 1.499 0 0 ** **

Mixed Kijima Model 5.85 0.95 1.499 0 0 3346.835 -306.63

* reflects the absence of the parameter in the model. ** means the same value found for
both Kijima II and Mixed Kijima model.

the performance time series data set in such a way that the series is always in its 95% con-

fidence interval estimates and the generated samples are similar to the real series, which
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Figure 9: WGRP adjustment to the Langseth & Lindqvist (2005) Offshore oil data set
without t1.

indicates that the proposed WGRP model with (α̂, β̂, q̂, (θ̂c, θ̂p))=(5.87, 0.95, 1.5, (0.0, 0.0))

appears to be a suitable model for this situation.

Besides, it is also sketched in Fig. 9 the proposed preventive maintenances policy

for the next 4 interventions, according to the adjusted model. Although t does not involve

t1, to sum up t1 to the proposed preventive interventions policy, from the 85th to the 88th

one, is a straightforward way for circumventing the problem.

It is presented in Table 2 the proposed instants for preventive interventions. Thus,

in average, it is suggested, for instance, that the next preventive intervention should be

performed in the instant 1657.7; however, it is inferred the system becomes unavailable at

any instant in the interval [1343.9, 2016.25], under a 95% confidence level. This provides

some important conclusions, since the decision making can be based on these estimates,

leading the maintenance crew to be under alert mode during these time interval.
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Table 2: Policy for the next four preventive interventions of the system studied by
Langseth & Lindqvist (2005).

intervention 85 86 87 88

2.5% quantile 1343.9 1399.76 1445.47 1513.81

mean 1657.7 1721.86 1801.9 1909.78

97.5% quantile 2016.25 2114.38 2261.27 2436.53

4.2 Windshield data set

The second data set involves 80 stoppage times regarding failure (say f) and service

(say s) actions on a windshield system, from Murthy et al. (2004). Table 3 brings the MLE

estimates of the alternative models and their respective log-likelihood and MSE metrics.

The maximum likelihood estimates of α, β, q and (θf , θs) to the proposed model are

(α̂, β̂, q̂, (θ̂f , θ̂s))= (0.06, 1.04, 1.5, (0.0, 0.0). Similarly to the previous case, the proposed

model has been specified to the Kijima II approach and achieved the best results in terms

of both LL maximization and MSE minimization. Also, graphics for LL function were

produced to verify its behaviour.

Figure 10: Curve of LL for RP model in Windshield database. The maximum is achieved
in a single point considering values of β in a specific space.
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Figure 11: Curve of LL for NHPP model in Windshield database. The maximum is
achieved in a single point considering values of β in a specific space.

Figure 12: Curve of LL for KI model in Windshield database. The maximum is achieved
in a single point considering values of β and q in a specific space.

This behaviour can be seen in Fig. 10, Fig. 11, Fig. 12, and Fig. 13.

As β̂ > 1, it is inferred the system is deteriorating; thus the greater the time

the greater the hazard. It might represent a wear-out phase, mainly characterized by
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Figure 13: Curve of LL for KII model in Windshield database. The maximum is achieved
in a single point considering values of β and q in a specific space.

Table 3: MLE parameters estimates of the WGRP models and respective MSE and LL
measures for the Windshield data set from Murthy et al. (2004)

Model α̂ β̂ q̂ θ̂f θ̂s MSE LL

RP 0.028 0.897 * * * 0.115 201.93

NHPP 0.119 1.465 * * * 0.0158 206.19

Kijima I 0.11 1.489 0.66 1 1 0.0151 206.22

Kijima II 0.0598 1.044 1.495 0 0 ** **

Mixed Kijima Model 0.0598 1.044 1.495 0 0 0.0053 207.99

* reflects the absence of this value in estimation process. ** means the same value found
for both Kijima II and Mixed Kijima model.

complex aging phenomena, where the system deteriorates (e.g., due to accumulated fa-

tigue) and is more vulnerable to outside shocks (MODARRES et al., 1999). In turn,
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(q̂, θ̂f , θ̂s) = (1.5, 0.0, 0.0) indicates that regardless the intervention type (whether due to

failure or service), its negative impact propagates through the entire system history with

the maximum possible intensity, oppositely to the offshore facility case. This is caused due

to the increasing hazard function (β̂ > 1), the deteriorating interventions (q̂ > 1), and

the adoption of the Kijima II model (θ̂ = (0.0, 0.0)). Thus, it is advised here the study

of different ways to intervene, since the current ones seem to contribute to the system

deterioration.

0 20 40 60 80

0
1

2
3

the WGRP propagation was based on (α,β,q,θf,θs) = (0.059, 1.04, 1.49,0,0)
intervention index

C
u

m
u

la
ti
ve

 t
im

e
s

WGRP conditional means 

Observed series 

WGRP samples 

WGRP samples 95% confidence intervals 

WGRP samples means 

Figure 14: WGRP adjustment to the Murthy et al. (2004) Windshield data.

It is illustrated in Fig. 14 the observed cumulative times t=(t2, t3, ..., t80), the

respective WGRP sample points and 95% interval estimates as well as some of the series

simulated from the fitted model. Further, it is presented in Table 4 forecasts from this

model for the next times between interventions.
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Table 4: Preventive interventions policy for the windshield data set from Murthy et al.
(2004) according the best WGRP model

intervention 81 82 83 84

2.5% quantile 1.93 1.95 1.97 2.01

mean 2.41 2.44 2.47 2.51

97.5% quantile 3 3.02 3.05 3.12

4.3 Transformers data set

This data set corresponds to 61 transformers stoppage events presented by Cristino

(2008), the last data set considered in this work. Here, the intervention type is related to

the complexity of the respective system: whether monophasic (the simplest case, repre-

sented here by letter m), or three-phase (say t). In Table 5, one can see the MLE’s of the

parameters for each model and the respective performance metrics. Following the same

reasoning from other databases, this one presents a stable behaviour of their LL function.

Figure 15: Curve of LL for RP model in Transformer database. The maximum is achieved
in a single point considering values of β in a specific space.
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Figure 16: Curve of LL for NHPP model in Transformer database. The maximum is
achieved in a single point considering values of β in a specific space.

Figure 17: Curve of LL for KI model in Transformer database. The maximum is achieved
in a single point considering values of β and q in a specific space.

As can be seen in Fig. 15, Fig. 16, Fig. 17, and Fig. 18, the behaviour of LL

function for each model appears to be stable and present an achievable maximum.

Thus, differently from the previous cases, now the proposed approach suggests a
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Figure 18: Curve of LL for KII model in Transformer database. The maximum is achieved
in a single point considering values of β and q in a specific space.

Table 5: MLE estimates, MSE and LL measures of the WGRP models with respect to the
Transformers dataset from Cristino (2008)

Model α̂ β̂ q̂ θ̂m θ̂t MSE LL

RP 179.77 1.588 * * * 52929.59 -363.43

NHPP 227.14 1.088 * * * 23521.41 -371.26

Kijima I 210.34 1.91 0.005 1 1 21664.52 -361.78

Kijima II 273.11 2.336 0.3805 0 0 22094.55 -361.58

Mixed Kijima Model 282.53 2.519 0.2378 0.449 0.589 21436.53 -360.59

* means the absence of this value in estimation process.

degrade between the Kijima models for each type of intervention. The maximum likelihood

estimates of α, β, q, and (θm, θt) are (α̂, β̂, q̂, (θ̂m, θ̂t))= (282.53, 2.52, 0.24, (0.45, 0.59)). As
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β̂ > 1, we conclude that the system is deteriorating. Thus, the longer the time, the

greater the hazard. However, as q̂ ∈ (0, 1), the interventions have restored the system

to an intermediate condition, between "as good as new"(where q = 0) and "as bad as

old"(where q = 1).
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Figure 19: WGRP adjustment to the Cristino (2008) Transformers data.

In turn, as θ̂m < θ̂t and the lesser the θ the greater the positive impact of the

intervention (approaching a Kijima II model), one can conclude that interventions on the

monophasic items (relative to θm) promote more restoration on the transformers system

than the interventions on the three-phase ones (relative to θt). Such a phenomenon might

result from the different levels of difficulty in performing interventions on monophasic and

three-phase systems as well as from the skill of the maintenance team for dealing with

these scenarios. Thus, the proposed model also allows to measure and compare the quality

of the different types of intervention, providing support to decide about crew training and

evaluation.

In Fig. 19, it is exhibited the observed cumulative times t=(t2, t3, ..., t61), the re-

spective WGRP sample points and 95% interval estimates as well as some of the series
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Table 6: Preventive interventions policy for the Transformers data from Cristino (2008),
according to the best WGRP model

intervention 62 63 64 65

2.5% quantile 9064.05 9200.17 9336.77 9456.1

mean 10126.57 10273.83 10397.75 10510.76

97.5% quantile 11192.19 11334.12 11504.78 11602.52

simulated from the fitted model. From Fig. 19, one could infer that RP is adequate to

the performance data set. However, it is clear from Table 5 that the RP is not among the

best models. In fact, RP is the worst model in terms of MSE and the second worst with

respect to LL. It allows one to conclude, from the best models, that there is a trade-off

between the maintenance interventions and the deterioration underlying the system, lead-

ing to an apparent phase of constant-value hazard function. Such cases are characterized

by random failures of the component; in this period, many mechanisms of failure due to

complex underlying physical, chemical, or nuclear phenomena give rise to this approxi-

mately constant-value hazard function (MODARRES et al., 1999). Four forecasts from

this model for the next times between interventions are presented in Table 6.
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5 Conclusions

This work presents a new approach capable of acting in Renewal Theory framework.

First, we present its functionality in Renewal Theory where its structure is a mixing

process of Kijima models inside GRP. With this approach, we can analyze proportionally

how each Kijima model is present in different interventions. This is made with the creation

of two parameters inside the concept of virtual age model. It is important to notice that

with this approach, we do not have to guess which Kijima model is used in databases.

The approach can estimate proportionally the presence of those models in different types

of interventions. Besides, the GRP model with this mixing is analyzed considering the

Weibull distribution.

Furthermore, theoretical properties are developed and its consequences are studied

through practical properties - random sampling processes. Through this, we present a

new meaning of involved parameters, once literature usually does not treat cases where

the value of shape parameter in WGRP is less than one. This new scenario is validated

through numerical simulations and consequently brings new meanings to the rejuvenation

parameter.

The approach is applied in real cases to verify its applicability in Renewal Theory

comparing it with other models - RP, NHPP, Kijima I and II models. The choice of the

best model is based on Mean Squared Error and Log-Likelihood measures. The approach

can, at least, be equal to the other models and be the best when KI and KII are used

in the database. These are important results, once now the decision maker does not need

to guess which Kijima model is used in its problem, but we provide how much of each

Kijima model is related in his intervention process.

In this way, the first two databases indicates that KII model is the best one- equally

adjusted to the proposed approach. The last case brings a mixing of Kijima models and

the used measures point to the new approach as the best model to be used.

After that, four preventive interventions are estimated based on ML estimators

found. This is a tool to be used in polices of preventive interventions considering confidence

intervals to each prediction.

We see potential to develop the same approach considering another probabilistic

distributions, such as Gamma Distribution. Furthermore, a general hypothesis test can be
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developed to measure the adherence of the proposed approach. Besides, important regards

about Competing Risks framework can be discussed in future works, such as a sophisti-

cation of the way to estimate who will occur first: censoring or undesired interventions

- thinking in creating a dynamic estimation of their probabilities and therefore its role

in the probabilistic behaviour of times between different interventions. Nowadays, this is

a constant measure and could be modeled dependent on the time, for example. Also, in

Renewal Theory framework, we can think in develop different models of virtual ages other

than Kijima ones. The behaviour of q and its form is something that incites some analysis

and further developments since the intervention crew can affect other aspects than real

age of the system.
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APPENDIX A – Algorithm used to

Estimation Process

Step 1: Choose the database to be evaluated;

Step 2: Set initial values of parameters set — β̂, q̂, and θ̂: (β̂, q̂, θ̂) ∈ [10−100, 10] × [−1.5, 1.5] × [0

Step 3: Set control conditions to optimization GenSA function — maxit = 10000,

nb.stop.improvement = 50, smooth = TRUE, max.call = 300000, max.time = 60*10,

temperature = 15000, verbose = FALSE (parameters from the function);

Step 4: Call GenSA to optimize the following set — par=as.vector(par), lower

= lower, upper = upper, fn = objectiveFunction, control=control (parameters used in

GenSA);

Step 5: Capture the set of maximum parameters and LL values to each model —-

RP, NHPP, KI, KII, and MK model;

Step 6: Calculate the MSE for each model and construct a table;

Step 7: Construct the graphic for the best fit in each database;

Step 8: Estimate the next four interventions in each database.
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